The term ‘composite’ has been used in material science refers to a material made up of a matrix containing reinforcing agents. The beginning of composite materials may have been the bricks, fashioned by the ancient Egyptians from mud and straw. Nearly 70 years ago, a number of technical products and other commodity materials were derived from natural resources e.g., textile ropes, canvas and paper were made of local natural fibers such as flax and hemp. Emergence of polymers in the beginning of the nineteenth century inculcated the new era of research based on exploring the viability of natural fibers and their applications in more diversified fields. At the same time, interest in synthetic fibers due to its superior dimensional properties, gained attention and slowly replaced the natural fibers in major avenues. With the passage of time, the accumulation of the hazardous synthetic byproducts and waste, started polluting the environment and once again led the scientists towards natural fibers due to their distinct advantages. Thus, the renewed interest in the natural fibers resulted in a large number of modifications in order to bring it equivalent and even superior to synthetic fibers. After tremendous changes in the quality of natural fibers, they emerged as a substitute for the traditional building materials including lumber, steel, portland cement and lime. Considering the high performance standard of composite materials in terms of durability, maintenance and cost effectiveness, applications of natural fiber reinforced composites as construction material, have done wonders and are environment friendly material for the future.

Many shortcomings due to high density and poor recycling properties were seen in glass fiber reinforced plastics. Moreover, glass fiber dust produced during processing triggers allergic skin irritation. The possible substitution of glass fiber by natural fiber in exterior application raised the question about mechanical properties of the material, flammability and effect of weathering. Natural fibers offer several advantages over glass fibers:

I. Plant fibers are renewable and their availability is unlimited.

II. When natural fiber reinforced plastics are subjected to combustion or landfill at the end of their life cycle, the released amount of carbon dioxide is less with respect to that assimilated during its life cycle.

III. Natural fibers are less abrasive and can be easily processed as compared to glass fiber.

IV. Natural fiber reinforced plastic, consisting of biodegradable polymer matrix are environment friendly and can be composted easily.

In recent time, many innovative scientists have utilized renewable waste biomass and used them as enforcement after fiber treatment in polymeric matrix. It has improved the physico-chemico-thermo-mechanical properties of the composite. These composites are characterized by latest techniques like SEM, TEM, AFM, DSC, TGD- DTA, XRD etc and evaluated by latest techniques for use in advanced bio-medical as-well as technological applications to improve the quality and viability. The emergence of green composite has surpassed their concern over biodegradability. The nano-composites are on the way to elevate the excellence in their performance and make the coming generations acquainted with the wonders of composite. I look forward in high hopes that upcoming scientist and young researcher could utilize the renewable natural resource by phyto-chemical studies and using the natural polymers that God has given us and explore the maximum potential of the natural wealth.