
Keywords: US National Building; Building information model;
facilities management

Introduction
Building information modeling (BIM)

According to the definition by US National Building Information
Model Standard Project Committee, BIM is “a digital representation
of physical and functional characteristics of a facility” [1]. This digital
representation (3d model) is rich in data and information which can
be shared for multiple purposes, such as energy simulation, clash
detection, cost evaluation, and facility operations and management.
This 3D digital representation benefits not only designers, but also
engineers working with systems, and facilities managers responsible for
the operation of the building. Autodesk’s Revit is a commonly used BIM
software program.

Leveraging BIM for facilities management (FM)

A prominent characteristic that BIM and FM share is a huge
amount of data. FM keeps the function of a building on track and to
implement FM services, a tool that gives easy access to data is useful.
There are intrinsic synergies between BIM and FM [2]. One of the
biggest potential contributions of BIM for FM, however, lies in its
long-term competence of providing FM services in the operation and
maintenance (O&M) phase. The duration of O&M phase spans 30 years
or even more, and the cost of building O&M makes up 75%-85% of
the total cost, which imposes considerable influence on and offering
possibilities of huge cost saving to the industry [3]. Therefore, for the
sake of improved maintenance, energy savings, and reduced costs in
the long run, an efficient BIM-based tool for FM services is necessary.

Sensor data

Sensor data is the output of sensors that responds to a specified
kind of measurand (input) from the ambient environment. The original
data itself is only values and strings stored in data repositories and not
easily meaningful at first sight. Therefore, processing and analyzing
the data is the key to having a better insight into the underlying
information hidden in the data. One of the main purposes of sensor
analytics is to find trends and patterns. Graphical presentations of data
is helpful in understanding how the data fluctuates and determining
if the fluctuation is haphazard or periodic. By reading the trends and
patterns, researchers can not only figure out what happened and what
is happening, but also predict the change of data in the future. Another
purpose of sensor analytics is to find out anomalies. By examining
deviations from a pre-established setpoint, people have a better
understanding of what is not in good condition or out of control. This
is significant for proactively preventing equipment failure, warning

information can be generated for troubleshooting and maintenance
when a part of heating, ventilation and air conditioning (HVAC) system
does not function properly [4].

Integration of BIM and sensor data

With the advent of “smart building” technology, more buildings
have been equipped with intelligent building automation systems (BAS).
In a BAS system, several types of sensors are needed to continuously
acquire a large amount of data [5]. Real-time sensor data helps with
evaluating building performance and data-driven decisions related to
facility operation and management [6]. The employment of BIM-and-
sensor-data integration is not confined to buildings. It also applies to
other structures that require daily monitoring and management, such
as bridges and dams.

One of the strategies to integrate BIM and sensor data is to attach
real-time data accumulated in sensors to geometric and spatial
information extracted from BIM model [6]. Such a “dynamic” BIM
model goes beyond a static source of information that comprises only
limited design and construction data. Through this dynamic BIM
model, facility managers will be able to visualize and monitor the status
of sensors and facilities [7]. Problems can also be detected and located
immediately.

Dynamic BIM models have the potential to minimize the cost on
facility restoring, and lowering the possibility of abnormal conditions
that jeopardize the comfort and safety of building occupants. In
addition, when documentation of data is needed, or when assessing
the performance of both facilities and their managing personnel, the
data saved in the BIM will be of importance. An example of integrating
of BIM and sensor data was carried out by researchers in Virginia
Polytechnic Institute and State University [7]. The case study studied
combining temperature sensor data and bridge deck model to evaluate
the performance of deck de-icing system. Since Revit does not support
the direct storage of data, the research team took advantage of Revit

*Corresponding author: Karen Kensek, Massachusetts Institute of Technology,
M.Arch, University of California, Berkeley, USA, Tel: +2137402081; E-mail:
kensek@usc.edu

Received February 06, 2020; Accepted February 13, 2020; Published February
20, 2020

Citation: Asida SM (2020) A BIM-based Visualization Tool for Facilities
Management: Fault Detection Through Integrating Real-Time Sensor Data into
BIM. J Archit Eng Tech Res 9: 228.

Copyright: © 2020 Asida SM. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Abstract

A BIM-based Visualization Tool for Facilities Management: Fault Detection
Through Integrating Real-Time Sensor Data into BIM
Kensek K*

 California, Berkeley, USAof Technology,

A building information model (BIM) can be used as a platform to track sensor data, which is useful for facilities
management (FM). One method is to use the Revit API (application programming interface) to integrate BIM and
sensor data.

 M.Arch, University ofMassachusetts Institute

J Archit Eng Tech Res, an open access journal

ISSN: 2168-9717

y
log

o
chn

 Te
gni

ree
nial Engrutcetihc

Ar
of al n

ur o Architectural Engineering TechnologyJ
Journal of

Research Article Open AccessResearch Article Open Access

Volume 9 • Issue 1 • 1000228

Kensek, J Archit Eng Tech Res 2020, 9:1

mailto:kensek@usc.edu

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 2 of 19

J Archit Eng Tech Res, an open access journal

20% to 80%. Besides ASHRAE 55-2017, ISO 7730 can also be used for
defining ranges [9].

Background Research
There have been several previous research projects and case studies

of the application of BIM for FM including those for BAS (or BMS)
and the integration of its real-time data into BIM models. A BIM-FM
framework requires the exchange of information between BIM models
and dispersed information systems.

Understanding the framework of BIM for FM

The value of BIM application in FM lies in that BIM improves
the current manual process of information handover, contributes
to more accurate and accessible FM data, and more efficient work
order execution Kassem et al. 2015. However, BIM for FM faces
challenges ranging from methodologies, shortage of knowledge about
implementation requirement and BIM expertise in FM industry [10].
In addition, people do not know enough about the value of BIM for FM
due to the lack of real-life cases.

Different BIM for FM strategies can be mapped out based on
various FM needs proposed by clients. As a result, the framework of
BIM for FM differs, and factors such as modeling requirements, BIM-
FM interoperability and deployment of dispersed information systems
should be considered separately for every single project. This section
introduces some case studies of BIM application for FM, with a focus
on what information systems are integrated and how BIM interacts
with these systems.

Case study #1: Northumbria University: Northumbria University
is located in Newcastle upon Tyne, UK. The case study started in 2010 and
lasted for five years. In the investigation of the University’s information
system, it was found that the drawings and information were stored
in two different repositories, which resulted in extra workload for
manual updates. Scanned elevations, sections, and photos for verifying
construction details were also saved in separate environments. Dealing
with all sources of information was time- consuming and requires
attention of FM personnel. BIM was introduced to simplify FM
workflow and reduce the need for technicians. FM personnel do not
need to switch between software since these sources are integrated into
Revit. The use of Revit made possible the automatic and instant update

Application Programming Interface (API) and wrote an external plugin
to make connections between the model and sensor data. With this
external plugin, data was imported into Revit in the form of schedules,
and data visualization and statistical analyses were shown in separate
windows.

BIM+sensor data+fault detection

The purpose of sensor fault detection is to identify faults and
pinpoint the location and type of them. The definition of “faults” can
be described as the deviation from normal sensor measurements,
which indicates an abnormal working status of sensors due to hardware
malfunction or failure. However, there is another interpretation
on “faulty” sensor measurements, based on the concept of thermal
comfort rather than the performance of sensor hardware. In the context
of indoor thermal comfort, “faults” are detected on the grounds of
comfort zones. Some main standards of thermal comfort and comfort
zones include American Society of Heating Refrigeration and Air
Conditioning Engineers (ASHRAE) and International Standardization
Organization (ISO).

As an example, RH data from one of the data feeds collected is
examined with the comfort RH range (20%-80%) defined by ASHRAE
55-2017 [8]. Any RH values lower than 20% or higher than 80% will be
defined as “faulty” and not desired for good thermal comfort (Figure 1).
The same rule can be applied to temperature as well.

Types of “faults”, when explained with a comfort zone and a
psychrometric chart, are linked with how people feel about the thermal
condition in the space where she is in. In this context, there can be up
to eight types of faults as combinations of temperature and humidity:
“hot,” “dry,” “cold,” humid,” “hot and dry,” “hot and humid,” “cold and
humid,” and “cold and dry” based on psychometric chart (Figure 2).

As BIM is commonly used in architecture and construction, and
a digital model can be supplied to the facility manager of a building, it
is possible to use it for building performance maintenance. One way it
can be used is to visually track sensor data and provide fault detection.
In this case, comfort ranges (temperature and humidity). “Values out
of ranges” indicates the existence of anomalous sensor data values.
The definition of “ranges” is based on ASHRAE 55-2017 comfort zone,
in which temperature ranges from 68℉ to 78℉, and RH ranges from

Figure 1: Define “normal” (upper zone) and “faulty”(lower zone) values based on comfort levels (relative humidity). X-axis, time. Y-axis relative humidity.
Above 20% relative humidity in this example is considered “faulty”=too dry.

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 3 of 19

J Archit Eng Tech Res, an open access journal

Figure 2: Types of “faults” explained with a psychometric chart.

of schedules, elevations and sections, 3D models and renderings. In this
case, Revit worked as a hub of information from other systems, and it
also provided reliable source of various presentations of information.

Case study #2: Carnegie Mellon University: Researchers from
Carnegie Mellon University developed an integrated multi-view
visualizer for interfacing HVAC information to support troubleshooting
of HVAC-related problems. In this visualizer developed with Java,
users are exposed to a total of eight modules that collects information
from a wide range of information systems. The visualizer integrated
floor plan view (d), 3D model view (f) and schematic diagram view
with text annotations of sensor data from BAS (e). This combination
provides clear representation of the location of HVAC components
and helps with the real-time monitoring of their working status. By
selecting any components from the list (c), information [(d) (e) and
(f)] of the corresponding components will be displayed. The visualizer
also supported the management of text-based work order information.
In work order context (a), users can specify problem type and problem
spatial scope. Information about HVAC system type and control system
type is also available. In the complaints log (b), new work orders for
the currently displayed component can be created and historical
work orders are available for examining the past performance of the
component [11].

Case study #3: University of Southern California: Facility
management in USC is one of the best examples that showcases the
links and exchanges of information between systems (Figure 3).
EcoDomus FM serves as the center of the BIM-FM framework,
integrating information from BIM and other systems including
CMMS, BAS, EDMS and Computer-Aided Facility Management
(CAFM) System. For example, the 3D view shows the position of an
inline fan and highlights it with green. General information about this
fan originally resided in CMMS is displayed on the right. And at the

same time, the operation and maintenance manual of the fan, which
is stored in EDMS, is shown on the same interface as the 3D model
and equipment information (Figure 4). There is also a BAS-related
pane designed for displaying conditional data conventionally managed
by the BAS. Examining information and data through an integrated
interface saves time since FM personnel does not need to switch
repeatedly from one system to another. Such integration also helps FM
personnel get more comprehensive knowledge about components, and
gives technical support to them in case troubleshooting or maintenance
work is necessary [12].

Integration of sensor data into BIM

An increasing number of modern buildings have become more
intelligent with the help of building automation system (BAS), which
acquiring data from numerous sensors. Sensor data, if appropriately
used, can be beneficial in terms of assessing building and facility
performance and as a result, supporting the decision-making process
during the operation and maintenance of a building. However, analyzing
sensor data alone does not contribute much to understanding facility
condition, since data makes far more sense when they are analyzed in a
“context” [5]. This context can be provided by spatial information from
building information models, which enables a visualized and integrated
way of data analysis. For instance, by integrating into BIM models data
from temperature sensors installed in HVAC systems, FM managers
can look for discrepancies between temperatures in adjacent rooms to
detect system faults [13,14].

BIM is a powerful tool for managing building information during
a complete lifecycle. Attempts of integration BIM with various sensing
technologies and devices are made in past research projects regarding
multiple areas in building automation [15]. For example, temperature,
humidity, and energy consumption sensors were used to implement
post occupancy evaluation (POE) and real-time energy performance

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 4 of 19

J Archit Eng Tech Res, an open access journal

Figure 3: BIM-FM framework adopted by USC FMS.

Figure 4: The location of an inline fan and maintenance manual in EcoDomus.

in a residential building [16]. Data retrieved from fire sensors were
utilized for establishing a fire alarm management system to determine
the authenticity of fire alarms and to prevent disturbance because of
false alarms [17].

The integration of sensor data with BIM is not confined to indoor
environments. An example of such integration is the application of
RFID and GPS sensors for building a fusion model that estimates

locations of tools, equipment and materials in construction projects
[18]. A second example is the use of load sensors in a crane navigation
system where the position of lifted objects are displayed in the context
of a building and surroundings. Meanwhile, real-time data is collected
through sensors and video cameras [19].

Sensor data: Sensor readings are a series of data ordered by a
particular rule, mostly by time. The structure of a reading could vary

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 5 of 19

J Archit Eng Tech Res, an open access journal

a lot, but some key attributes such as sensor ID, reading ID, data value,
and time stamps are always required. Other attributes besides these key
attributes are supplementary, and it is up to users to determine whether
they should be integrated into BIM models or pruned. For example,
a sensor reading downloaded from Adafruit IO contains up to 11
attributes (Table 1).

Attributes in bold and italic, such as “id”, “value”, “feed_id” and
“created_at”, are four key attributes that are indispensable for the
integration into BIM.

One of the main challenges of sensor data readings is the
overwhelming increase of data in a short period of time. Therefore, a
reliable data repository or a database (online or local) is necessary for
the recording and query of data [5]. However, there is always a limit
of capacity for the amount of data that comes into the repository, so a
common practice is to discard past readings and replace them with most
recent ones. This explains why there is an attribute called “expiration” in
Table 1. For example, in Adafruit IO, a sensor recording can be kept for
a maximum of 30 days.

Sensor metadata: Sensor metadata can be considered as
descriptions of data, or “data about data” [20]. It provides necessary
information for sensor discovery and data processing [5]. Sensor
metadata generally falls into four categories:

a) Static information about the experiment: background and
phenomena measured by the sensor network;

b) Static information about the sensor: background data about the
sensors including what they sense (temperature, humidity, CO2,
pressure, etc.) and where they are located;

c) Dynamic sensor data: information about the sensor’s status,
e.g. whether or not it is working or out of order, lacks power,
completely broken, etc.;

d) Dynamic data quality information: continuous information
about the quality of the data.

One major purpose of the sensor metadata is to easily keep track of
anomalies. For example, when faulty values are detected in data analysis,
researchers want to find out what specific sensor is responsible for the
abnormal data values. To locate the correct sensor, a database of sensor
metadata including the sensor’s serial number and other categories
of supporting metadata can be developed. Dawes et al. developed a
sensor metadata repository (SMR) and integrated it with Microsoft
SensorMap, a platform for publishing, browsing, and searching for
sensor data based on a geospatial interface Dawes et al. 2008. Points of

real-time sensor data are distributed on the map based on the location
where sensors are installed. At the same time, users can take advantage
of the “time traveler” feature in SensorMap to select any point of time
and see sensor data at that point. SensorMap also allows users to share
and publish real-time data and metadata from their sensors so the data
can be searched on the map [21]. Different types of sensors can be
distinguished by their different icons.

An example of BIM+BAS (building automation system)
integration: Dasher 360: A good example of BIM+BAS integration is
Dasher 360 developed by Autodesk [22]. Dasher 360 collects data from
a wide range of sensors including temperature, RH, CO2 concentration,
sound level and light intensity sensors. Dasher 360 gives excellent
support to the visualization of sensor data information with graphs and
quick navigation to sensors in the BIM model, but the lack of sensor
fault detection is a main limitation.

In Dasher 360, users can choose any sensor both from the sensor
list and the model. When choosing a sensor from the list, users can click
on the sensor name to examine the historical data values in a line plot.
When choosing from the model, users need to point the cursor to the
sensor (which is represented by a dot) to check the value. By clicking
on the “Go To Sensor” button next to the sensor name, users can be
navigated to where the sensor is installed in the model.

Overall, as an ongoing research project, Dasher 360 is an excellent
integration of BAS data into BIM by locating multiple types of sensors
in the model and by appending real-time sensor data to these models.
One major limitation is that it although it displays data numerically
and as line plots, there seems to be a lack of alert information related
to potential problems with sensors and data. For example, the loss of
a large amount of data values observed in March 2015 should have
been announced by warnings, either somewhere on the main interface
or in the sensor list, in order to figure out the cause of this data value
loss. These warnings are important in terms of reminding users of
sensor malfunctions during real-time data monitoring and provide
information for locating and fixing problematic sensors. Dasher 360
has developed from Project Dasher (Autodesk Research Group) into
a mature software tool that displays historical and real-time sensor
data for use with Revit models. It is an excellent platform for providing
owners and facilities managers with a better understanding of the real-
time building performance. One drawback is that it does not seem to
analyze the data being presented to determine if the sensors are working
(not showing data) or are within defined comfort ranges.

Other research examples of BIM+sensors: There is a growing area
of relevant research about BIM and the use of sensors. Kazado et al.
makes the case that “the BIM model cannot show real-time information
related to the performance of the building in the operational stage.” They
propose three methods to solve that problem through combinations of
the sensors, Revit, and Navisworks so that not only facilities managers,
but also occupants, can benefit from access to the data [23]. Others
give case studies where sensors were put in social housing and comfort
parameter readings were taken within the building information model
[24]. Another approach used augmented reality to visualize sensor
readings by programming Dynamo in Revit and using unreal engine (a
common game engine) for the augmented reality [25].

It is not only the visualization of the data from the sensors that
is important, but the actually placement of the sensors is critical,
“incorrect sensor [light] placement can compromise system
performance, cause discomfort to occupants and diminish savings”
[26]. Their research suggested a method for optimization of placement

Attributes Explanation
“id” The ID for current line of sensor reading.
“value” The sensor data value.

“feed_id” The ID for the feed. A “feed” is a plain text file consisting of data
values and other attributes for a single measurand.

“feed_key” The feed key. A unique string used by users to get access to
the feed.

“created_at” The timestamp recording when this sensor reading is created.
“location” The location where the sensor is installed.
“lat” The latitude at which the sensor is installed.
“lon” The longitude at which the sensor is installed.
“ele” The elevation (height) at which the sensor is installed.
“created_
epoch” Another form of timestamp.

“expiration” The expiration time of current line of sensor reading.

Table 1: Attributes in an IoT sensor reading.

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 6 of 19

J Archit Eng Tech Res, an open access journal

of the sensors. Another research project focused on using light sensors
to control shades and louvers in a building information model through
the use of Dynamo rather than the Revit API [27]. BIM+sensor data
is an expanding research area; these are just a few examples. None of
the examples read showed the link between both comfort and fault
visualization in BIM.

Fault detection algorithms

Fault detection has successfully played its role in many engineering
domains including automotive and industrial manufacturing for
decades, but its application in AEC industry is still under development
[28]. Real-time data in buildings need to be monitored to ensure
the proper function of facilities and equipment. At the same time,
however, detecting anomalies among data sets and problematic
behaviors associated with them is also indispensable. Fault detection
is achieved by developing algorithms. Some of them are quite simple
and straightforward, such as statistical generation model (SGM) based
on logarithm likelihood and Adaptive-neuro fuzzy inference system
(ANFIS) based on squared prediction error (SPE) index. However, these
algorithms sometimes may lead to incorrect results. Advanced algorithms
using machine learning or artificial intelligence can also be used.

Statistical generation model (SGM): Different strategies and
algorithms for fault detection and alarm generation were proposed by
past researchers. A straightforward implementation of fault detection is
realized by taking advantage of a “statistical generation model (SGM)”
proposed in a research related to BAS. First, a model is constructed
based on normal behavior. Then, parameters in this normal behavior
model is optimized with a maximum likelihood algorithm. With this
optimized model, incoming values are examined and compared to this
model. “Logarithm likelihood” or “log-likelihood” is the key to the
SGM model since it determines whether a value is normal or faulty.
Every value in the SGM model has its log-likelihood of appearance.
A value will be considered as faulty if this log-likelihood falls below a
specific threshold [29].

Adaptive-neuro fuzzy inference system (ANFIS): Another
method of fault detection is called “Adaptive-neuro fuzzy inference
system (ANFIS)”, in which neural network learning algorithms and
fuzzy reasoning are used. In ANFIS method, a squared prediction
error (SPE) index is invented to detect sensor faults by calculating the
deviances of measured values from predicted values [30]. When ANFIS
method is used, SPE index can be calculated with the following formula:

𝑆𝑃𝐸$%&'(=*𝑦m−𝑦p*)

where ym stands for measured values and yp for predicted values.

To test the fault detecting ability of ANFIS method, researchers
introduced a complete sensor fault of 100 μg/m3 to a PM10 sensor
from the 80 th sample. Test results showed that the SPE index increased
quickly and exceeded the threshold value marked by the red line. This
result indicates that large deviances of measured values from predicted
values happened starting the 80 th sample, and the sensor is not
working properly. It can also be observed that the SPE index values
fluctuates intensely as soon as the fault was introduced, with some
values fall back to below the threshold value. These values after the 80
th sample and below the line are incorrect results, because they indicate
that the sensor is working properly, which is contradictory to the fact.
Therefore, a limitation of this method is the accuracy of results.

Machine learning algorithms: Besides SGM and ANFIS method,
there are also a great variety of more advanced fault detection algorithms.
These advanced algorithms are more robust and accurate, and usually

involve the application of machine learning and/or artificial intelligence.
There is an algorithm that features the “prediction-correction” process,
during which an updated estimation of system state is provided every
time a new measurement is available [28] In addition, machine learning
can be combined with a probabilistic model of prediction produced as
a result of Gaussian process regression to detect malfunctions in HVAC
systems [31].

Simple algorithms: A fault detection algorithm does not always
have to be complex to be useful. It just has to be accurate within the
bounds of its context. For example, a null reading from a temperature
sensor in a room is also a fault as a value is expected. Determining the
reason for the null reading might be complex, but the algorithm (check
for null readings) is not. A second example is checking for a value
within a specified range. If the value is not in the range, it is a fault. For
example, a temperature set point might be 72°F (22.2°C) and the float
3°F (20.6°C to 23.9°C) to achieve comfortable working conditions. A
temperature reading of 80°F (26.7°C) would be considered a fault in
this case, but perhaps not for another set of conditions/ranges.

Methodology- Adafruit io Reader Tool
Revit allows users to add new features to its existing functions. These

new features can be plugged into the software by coding in Revit API
with Microsoft Visual Studio, in Revit Macro development environment,
or by coding graphically in Dynamo. The Revit API features the
combination of BIM parametric modeling and programming functions.
Users can take advantage of this interacting programming method to
design and manipulate Revit elements through customized algorithms
and computational logics. One of the benefits of using Revit API is that
it frees users from repetitive manual operation with automatic batch
processing developed for particular functions [32].

Adafruit IO is a free cloud-based service that serves primarily to
display, store, and retrieve real-time data. It is compatible with both
hardware and software such as Arduino and Python. With Adafruit
IO, users can keep their projects connected to the Internet or other
internet-enabled devices. Feeds are central to Adafruit IO. They work
as repositories of both sensor data uploaded by users and metadata, for
example, the date and time when a piece of sensor data information is
created or GPS coordinates (longitude, latitude, and elevation) of the
sensor. Data feeds can be added, deleted, downloaded, and exported
as CSV or JSON files for analysis. Furthermore, they can be shared.
Depending on the size of the group with which a user plans to share
his/her data, fine-tuned sharing and privacy controls can be applied to
allow and restrict access to data feeds. Any data sensors could have been
used in this research project. Arduino was chosen because of its easy
cloud links, and some sensors had been previously placed in the case
study building. For a real building installation, more reliable sensors
should be used.

Adafruit IO Reader is a new Revit plugin that was written to
integrate IoT sensor data and BIM to visualize sensor data and navigate
users to corresponding sensors in Revit. There are three phases to the
workflow in creating the Adafruit IO Reader tool: Preparation, tool
development, and validation of usability (Figure 5).

Preparation

The code that supports the Adafruit IO Reader Tool was developed
in Revit Macro IDE. An application level macro is more desirable to
ensure that the tool can be opened in more than one Revit session.
A second reason for choosing Revit Macro IDE is that all necessary
references have been loaded automatically when a new macro is created.

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 7 of 19

J Archit Eng Tech Res, an open access journal

Tool development

Sensor data and a 3D model are two key items necessary before
starting the tool coding and development. It was verified that the data
can be acquired for a relatively long period of time and that the 3d models
and every single element that comprises them can be manipulated (for
example: Applying color fill/outline or changing material, etc.) by code.

Two types of connections can be found in the developing process.
A unidirectional connection exists between beacon sensors (hardware)
and Adafruit IO Server (cloud-based platform). Sensors collect data,
and upload them to the server. In contrast, the interaction between the
cloud-based platform and software is bidirectional. Adafruit IO Reader
(software) developed with Macro IDE in Revit initiates requests for
synchronization to retrieve data from the server, and at the same time,
the server provides data files by downloading data to a local folder and
importing to Adafruit IO Reader.

Note that not all data from the server is necessary. For example,
these IoT sensors in the research collect real-time temperature, relative
humidity (RH), and voltage data. However, researchers might want to
focus only on those measurands that are directly associated with the
ambient environment. In this case, only temperature and RH data
values were collected. These values are combined with pre-defined
parameters including setpoints and comfort zone ranges (threshold
values) to generate alerts when there are sensors that fault.

A Revit model was obtained of Watt Hall, and five sensors were
deployed to test the software as it was being developed. Five sensors
were chosen for the practical reason that they were available. The intent
of the case study was to show that real data could be shown in Revit
and a determination of a fault made. It didn’t really matter how many
sensors were actually installed.

Based on the defined requirements, there were nine main features
to be coded, divided into three categories:

Files and user settings:

• Read sensor data file from Adafruit IO server and save them in
a designated local folder.

• Save customized options by writing to and reading from a

configuration file (INI file) to ensure that they will not be lost
when the program is relaunched.

Data display and visualization:

• Display the data in both data tables and plots.

• Tables and in can be switched between “full” mode and
“partial” mode based on a time range set by the user.

• Tables can be switched between “all values” mode and “faulty
values only” mode.

• Navigate tool users to sensors with faulty values and highlight
their positions in Revit.

• Attach sensor photographs that match the sensor model.

Comfort zone:

• Set temperature and RH comfort zone to define “normal” and
“faulty” values.

• Highlight loss of values and/or values out of comfort zone
(“faulty” values) with different color schemes in data tables.

Detailed workflow of tool development

The tool development is feature-oriented and can be divided into
three sections: Data retrieval and pruning, fault definition, and sensor
model visualization (Figure 6). Features in Adafruit IO Reader were
realized either using information from only one section (e.g. feature
1,4,6,9), or combining information from multiple sections (e.g. feature 5).

Section #1: Data retrieval and pruning: The first section
concentrates on building the “hardware-platform-software” connection
for data retrieval and pruning (Figure 7).

IoT sensors update data at a regular interval of 15 minutes. All data
are stored on Adafruit IO Server, and users can sign in with a valid
username and password on the Adafruit IO homepage to get access to
data. With the username and the AIO key, a query that gets all available
feeds from the user can be as simple as a URL in web browsers, like this:

https://io.adafruit.com/api/v2/{username}/feeds?X-AIO-
Key={AIO key}

Figure 5: Methodology and design workflow.

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 8 of 19

J Archit Eng Tech Res, an open access journal

On this feed information page, all feed IDs and feed keys for current
user are available. Every feed in Adafruit IO is assigned a unique feed
key that can be used to check real-time data in this feed.

https://io.adafruit.com/api/v2/{username}/feeds/{feed key}/
data?X-AIO-Key={AIO key}

After replacing the strings in the braces with a valid username, feed
key and AIO key, users will be led to the data feed file. It includes not
only data values, but also information about the data ID, feed ID, feed
key, created time, created epoch and expiration time (Figure 8).

In addition to checking out information about all feeds or feed data
values, there are also a large number of commands that make changes
to the feeds, such as inserting, replacing and deleting, etc., as long as
the username, feed key and AIO key are provided. This simplicity
of authentication allows more users to get access to and manipulate
data without signing up for an Adafruit IO account and improves the
efficiency of sharing data within a research group. However, this simple
retrieval of data requires that everyone involved takes confidentiality
very seriously. In case the key is accidentally given away to non- group
members, the research advisor or group leader can generate a new key
to make the previous one invalid.

The original data files were downloaded from Adafruit IO Server
and saved as CSV files by executing C# codes in Revit Macro IDE. But

these CSV files need to be pruned before they are imported into the
Adafruit IO Reader. The process is divided into three main steps: Prune,
reorganize, and translate date and time. The first step of pruning is to
reduce redundancy. The file contains many secondary attributes that
do not have values (null) or are not relevant to the needs of the Adafruit
IO Reader. The tool omits all supplementary information and focus
on only primary attributes, including “value”, “feed_id” (feed ID) and
“created_at” (the time when the value is created). The second step is to
reorganize these files to make sure the information can be displayed
in correct positions when they are opened with Excel. In the CSV files
after the first step, attributes and their numeric or nominal values are
in pairs and this formation applies to the whole file from the first to
the last line. Therefore, all the attributes should appear only in the first
line as the header of data tables. The rest of the file belongs to values
that corresponds to attributes. Square brackets (“[]”), braces (“{}”), and
quotation marks (") were completely removed from data files. The third
step is to work with time and date. Because the time recorded in these
data files are based on Zulu Time or Greenwich Mean Time (GMT),
which is 8 hours ahead of Pacific Time in Los Angeles, all the hour
values need to be subtracted by 8 to do the time zone conversion (add
16 to hour values and subtract day value by 1 if hour values is less than
8), and get all “T” and “Z” removed by replacing them with spaces. The
sensors do not know that they are in Los Angeles or where they are
located in the building. They need to be told this.

Figure 6: Detailed workflow of tool development with the feature checklist.

Figure 7: Data retrieval and pruning.

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 9 of 19

J Archit Eng Tech Res, an open access journal

All the steps above are realized by a C# function in Adafruit IO
Reader. CSV files after pruning are ready to be imported into the tool
and displayed in both tables and line plots. In addition, these files will be
connected to sensor models in Revit to achieve the goal of visualization
through combining real-time sensor data and 3D models.

Section #2: Fault definition: Two types of faults are considered
in the tool development: Loss of data values and values out of ranges
(Figure 9).

“Loss of data values” means there is no valid temperature or RH
data at a specific point of time. This results in a “nan” no value (Figure
10) in a data table and it is often related to hardware glitches or battery
power issues.

“Values out of ranges” indicates the existence of abnormal sensor
data values. The definition of “ranges” is based on ASHRAE 55-2017
comfort zone, in which temperature ranges from 68℉ to 78℉, and RH
ranges from 20% to 80%. Besides ASHRAE 55-2017, ISO 7730 can also
be used for defining ranges. All data values that do not fall in these
ranges are treated as “faulty” and result in colored cells in data tables
on the main interface (Figure 11).

Although it is easy to spot the “nan” (no value) in the charts,
the software highlighted values in the data table in orange for those
higher than the maximum value and light blue for those lower than the
minimum value.

In addition to ASHRAE and ISO comfort zones, users are free to
customize these own comfort zones to fit the needs of thermal comfort
in different places. However, there is a problem with customized
comfort zones. Manually set numeric values will be reset to default
values after the program is restarted. Therefore, an extra configuration
file that stores these values is required to save customized settings.
Customized values are written to this file from comfort zone dialog box
in the tool, and they can be read from the file to replace default values
when the same dialog box shows up. Introducing the configuration
file reduces repetitive typing work, which renders Adafruit IO Reader
more user-friendly.

Section #3: Sensor model visualization: The third section
focuses on various visualization strategies, including 3D models with
color schemes and on-site photographs (Figure 12). This visualized
information was combined with data files to finally accomplish the
main goal of Adafruit IO Reader to integrate real-time sensor data into
BIM. During the post-development phase, the usability of completed
tool was evaluated. IoT sensors in Watt Hall (WAH) were used as a
case study. The two main evaluation items were the following:

• The connections of cloud-based platform (Adafruit IO Server)
with hardware (IoT sensors), and software (Adafruit IO
Reader) are effective through validating synchronizations of
data with the Server;

• All features and functions coded (1-10 in Section 3.1.2.1)
work properly as expected and/or produce correct outputs.

Only under the circumstances where both items are checked and
considered successful can Adafruit IO Reader be deemed effective or
usable.

Watt Hall Case Study
Overview

Watt Hall on the USC campus was selected as the case study
building. The five-story building covers a net area of 67,855 square
feet, with three stories above ground and one underground with a
mezzanine. Five IoT sensors are installed in different locations in Watt
Hall for data collection (Figure 13). These sensors are originally installed
by a researcher from a project named TrojanSense. In this project,
real-time sensor data are collected and analyzed along with occupants’
expected thermal status to establish a data-driven comfort model that
lends credibility to adjusting HVAC systems [33]. Temperature and
RH data in Watt Hall third floor southeast corner (building science
corner), Upper Rosendin (two sensors), Watt 212, and Watt B1 was
gathered and at the same time uploaded to Adafruit IO server. With the
approval from the leader of TrojanSense project, the access to sensor

Figure 8: The original data file that records sensor data values and related information.

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 10 of 19

J Archit Eng Tech Res, an open access journal

data feeds on the server was granted for the development of Adafruit
IO Reader.

The intent was to demonstrate that the data from the five sensors
could be retrieved by the Adafruit IO Reader, values shown in Revit as
both tabular and line plots, and faults detected and highlighted in color
with the corresponding sensor and its location.

Hardware

The hardware used in the case study were developed by the
TrojanSense team. They consist of ASAIR AM2302 IoT sensors
powered by AA batteries and connected to Arduino ESP32 board with a
Wi-Fi and Bluetooth microcontroller (Figure 14). These sensors collect
temperature, relative humidity, and voltage data.

Sensors were attached to the outside of the 3D-printed shells.
Batteries supplied power to ESP32 boards and microcontrollers. These
parts were put into the shells and installed under a studio desk in Watt
Hall, in the Building Science corner, on a fire alerting device in Upper

Figure 9: Fault definition.

Figure 10: Loss of data values (red rectangle) in “value” column.

Rosendin, on the staircase connecting Lower and Upper Rosendin,
under the desk in Watt Hall 212, and on the wall in Watt Hall B1
(Figure 15).

Software
The Revit model was provided by USC FMS. 3D views of 3rd floor,

2nd floor and basement were used (Figure 13). The opacity of some
building elements and the viewing angles are adjusted to ensure that
sensor models are visible. The model of IoT sensors were created as a
Revit family to be added to the model based on “Sensor Photos” and
measurement of sensor dimensions (Figure 16-4).

To work with Adafruit IO Reader, the first step is to get program
files and copy them to the specified folder. The project file “Adafruit IO
Reader.zip” can be downloaded from GitHub (https://github.com) by
searching “Adafruit IO Reader Ver. 0.5”. The program is started with
Macro Manager in Revit, which can be found near the right end in
“Manage” ribbon. First, select “Application” tab control and any macro
from A to E. Then, click on “Run” button to run the selected macro.

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 11 of 19

J Archit Eng Tech Res, an open access journal

Figure 11: Data values out of range with color schemes Orange-higher than the maximum; light blue- lower than the minimum.

Figure 12: Sensor model visualization.

Running the macro brings up the highlighted sensor model in a
3D view and the main interface of Adafruit IO Reader with real-time
sensor data retrieved from the server (Figure 17).

In the main interface of the Adafruit IO Reader, most of the space
on the main interface window is used for data table view panels and
line plot view panels visualizing sensor data. The interface is currently
comprised of 12 functional modules (Figure 18).

• Menu bar items: Menu commands related to synchronizing
sensor data with Adafruit IO server, clearing data display on

the interface, editing thermal comfort zone and file path for
storing sensor data files.

• Sensor list: A dropdown list containing five IoT sensors
installed in Watt Hall. By selecting any sensor from the list,
the program automatically load temperature and RH data
files and display them in view panels. At the same time, the
program takes users to the selected sensor model and zoom in
to the view of that sensor.

• Revit element ID: Every sensor model in Revit is assigned a

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 12 of 19

J Archit Eng Tech Res, an open access journal

Figure 13: Locations of sensor installation in Revit and their photographs.

Figure 14: An IoT sensor.

six-digit Revit element ID. This is used in source code to create
the many-to-one relationship between data feeds and a sensor
model.

• Update data: A shortcut button for synchronizing sensor data
with data feed stored on Adafruit IO server.

• Reset filter: A temporary button for developer’s testing and
debugging only. This will be removed in future versions.

• Temperature tab control: Switch between temperature data
table and line plot.

• Temperature view panel: Display temperature data table (by
default) and line plot.

• RH tab control: Switch between RH data table and line plot.

• RH view panel: Display RH data table (by default) and line
plot.

• Room photo: Display the photo of the room where the sensor
is installed.

• Sensor photo: Display the close-up view of the sensor.

• Display settings: The settings related to manipulating data

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 13 of 19

J Archit Eng Tech Res, an open access journal

Figure 15: Sensor locations in Watt Hall.

Figure 16: Watt Hall 3D models (1-3) and IoT sensor model (4).

tables such as filter values according to start and/or date, or
the status of values (faulty or normal).

Data retrieval, pruning, and synchronization: Sensor data is not
automatically synchronized with the latest version on the server. It
must be done manually either from menu bar or the shortcut button
on the interface. The average time spent on data syncing in the tool is
approximately 8 seconds per time, so it is not ideal to make tool users
wait by synchronizing data every time the program is launched.

Save customized settings: The bidirectional interaction between

the configuration file and Adafruit IO Reader can be used for
customized comfort zones. The program reads the customized setting
from the file and displays the setting in the Comfort Zone window,
where users are free to adjust the threshold values for new settings.

Data tables and plots: Data tables and line plots take most of the
space on the interface, and they serve as the basis of other program
features. Data tables in Adafruit IO Reader share the same layout as
those CSV files that can be opened with Excel upper left (Figure 19).
The most recent 1,000 data values are available in both data tables. This

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 14 of 19

J Archit Eng Tech Res, an open access journal

Figure 17: The result of running macro “A_Watt_Hall_Building_Science_Corner”.

Figure 18: The main interface.

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 15 of 19

J Archit Eng Tech Res, an open access journal

is the amount of data for approximately 15 days. Past values older than
15 days will be erased and replaced by new values to dispose space for
storage. Line plots, as a more visualized presentation, are generated
based on data values in the second column upper right (Figure 19).
Users can switch between tables and graphs with tab controls at the
upper left corner of view panels. Both data tables and line plots can be
manipulated by different display settings to allow users to focus on a
specified portion of data.

Full and partial tables/plots: Manipulation of data tables is
completed by “Display Settings” on lower right corner of the main
interface. One of the settings is named “Date Filter.” Sometimes, there
may be a time range of interest where data values need special attention.
Adafruit IO Reader provides a date filter that allows users to focus on
only an excerpt from the full table. Either start date or end date, or
both dates can be used for setting a range. The filter works on not only
to data tables, but also line plots. With such a filter, the line plot view
looks like “zoomed in”, enabling the observation of data fluctuation in
a more legible manner with a smaller scale.

All values and faulty values: Another “Display Setting” is named
“Faulty Values Only.” To enable this, users just need to check the
“Faulty Values Only” box in “Display Settings” lower (Figure 20). This
feature was designed for users to quickly locate faulty values defined by
the current comfort zone at work. All values within the comfort zone
are filtered out by this setting. A blank data table indicates that all values
recorded are considered normal upper right (Figure 20). When “Faulty
Values Only” box is checked, line plots will be temporarily unavailable
since the appearance of faulty values is, in most cases, sporadic
rather than continuous. Such data values with little or completely no
chronological continuity are not sufficient for generating line plots.

Navigation to sensor models: When “Run” button is clicked,
Revit will begin to execute codes in the selected macro and switch
current view to the sensor model associated with this macro (Figure
21). Meanwhile, the main interface will show up, providing a wide
range of information including sensor data value tables, line plots,

Figure 19: Data tables and line plots (Upper left-Data tables; Upper right-Line plots; Lower-Steps and clicks).

currently working comfort zone, etc. Users can also take advantage of
features introduced in previous sections, such as “Display Settings,” to
manipulate the display of data.

On-site photographs: For every sensor in the list, “Room Photo”
and “Sensor Photo” are displayed next to data tables. These photographs
were stored in a separate folder, and they can be updated by replacing
files at any time. Photographs are tied up with data tables, so every time
a sensor is chosen from the combo box and corresponding data tables
loaded, these photographs will show next to tables.

Comfort zone presets: The comfort zone options define an
acceptable range for data values that can be considered as “normal.”
Two major standards of thermal comfort zone, ASHRAE 55-2017 and
ISO 7730 (including summer and winter), are provided in the tool for
needs in different indoor environment. Thredshold values for ASHRAE
and ISO comfort zones are read from psychometric charts and saved
as presets.

Color schemes: Color schemes are associated with the definition of
comfort zones. With a comfort zone set, data values can be categorized
as “too high,” “normal,” or “too low.” Color schemes are assigned to
these three kinds of values. Values higher than the maximum threshold
value are marked with orange, while those lower than the minimum are
colored with light blue (Figure 22). By applying color schemes, users
can easily distinguish “faulty” values and when these values occurred,
which can help with figuring out the reason for faults.

Discussion and Future work
Adafruit IO Reader is a new plugin that provides users access to

temperature and humidity data and visualization of fault detection
in Revit by interfacing with real-time IoT sensor data feeds stored on
an Adafruit IO server. By putting together information from different
sources, the tool works as a “bridge” between sensors and data feeds on
the cloud, navigating users to sensor models in Revit while loading data
feeds to the main interface from the server (Figure 23, 24).

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 16 of 19

J Archit Eng Tech Res, an open access journal

Figure 20: All values and faulty values (Upper left -All values; Upper right-faulty values only; Lower-Steps and clicks).

Figure 21: 3D model and information for sensor in Watt Hall Lower Rosendin.

Adafruit IO Reader is composed of nine main features separated into
three categories as previously mentioned. These features are examined
with the case study of Watt Hall, and most of the features performed
satisfactorily by always producing desired outputs, except for some
minor issues with the navigation to sensor models. Of particular note
is the integration of the data within a building information model. FM
personnel can use Revit to check the sensor list, discover the location
of the sensors in the digital model and by the room photographs linked
to each sensor, and show the data as tables or line plots. Settings can

be created to define a “fault.” In the case study, ASHRAE 55 and ISO
7730 were used to set high and low values for temperature and relative
humidity. If the room values were outside of these settings, the sensors
would be highlighted allowing facilities managers immediate feedback
to uncomfortable conditions. A fault is also detected if there is not a
value (“nan”) being sent by the sensor.

Limitations

Despite that the nine main features worked properly, there is still

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 17 of 19

J Archit Eng Tech Res, an open access journal

Figure 22: Applying different comfort zones to data tables.

Figure 23: The “bridge”-Adafruit IO Reader put together information from multiple places.

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 18 of 19

J Archit Eng Tech Res, an open access journal

Figure 24: The integration of sensor data and BIM through Adafruit IO Reader.

plenty of room for improvement for the Adafruit IO Reader. The biggest
limitation lies in the installation of IoT sensors and the influence on
availability of data feeds. Amongst the five sensors in Watt Hall, only
one at Building Science Corner was plugged in, while another four are
powered by AA batteries. A possible explanation for doing so is that the
wiring between sensors and sockets will reveal the locations of sensors
and expose them to the risk of being taken away. Taking advantage of
solar energy is ideal in terms of sustainability, but it is impractical in
indoor settings without daylighting [33]. Given that AA batteries were
used for powering most of the sensors in Watt Hall, the replacement of
batteries becomes a serious issue. If the replacement stops, the sensors
will eventually out of power and stop collecting data. Another problem
derived from the previous one is the limitation of the data feed pruning
algorithm. The current pruning algorithm is solely designed for sensor
data files generated by ASAIR IoT sensors and retrieved from Adafruit
IO servers. In case of processing data files generated by other types of
sensor, it is likely that some necessary information may be erroneously
pruned, which will lead to data files with disordered formatting. A third
limitation is that the sensor management is accessible only through
adding Revit Family (RFA) files of sensor model to Watt Hall model and
through editing source code. These approaches are far too complicated
for users new to Revit and C#, and lacks efficiency when a large amount
of sensor models and corresponding information need to be added to
or deleted from the model. Adafruit IO Reader currently collects a total
of 10 data feeds (both temperature and RH feeds) for five sensors.

Managing sensors and data feeds of this amount is still possible by
manual editing of codes, but a brand-new and automated approach for
sensor management should be taken into account before Adafruit IO
Reader can deal with more sensors.

Future work

Future work includes addressing existing limitations and
expanding the functionalities of Adafruit IO Reader. The main areas of
work include improving the speed of the workflow, updating the code,

allowing the use of data feeds from other sources, and imbedding the
tool in existing facility management platforms. The synergy of features
from these platforms and Adafruit IO Reader will provide FM managers
with more comprehensive information about facilities and equipment
in a building, supporting both quotidian monitoring work and, when
necessary, corrective maintenance work (troubleshooting). Another
alternative is to instead create the ability to make custom fault ranges
in existing software like Dasher 360 to provide the same functionality.

Conclusion
The combination of visualized sensor data and sensor models were

evaluated by a case study of Watt Hall, and the result showed that Adafruit
IO Reader is able to achieve the integration by navigating users to sensor
models, while providing corresponding sensor data information that
is open to customized manipulation through various display settings.
The findings of the research is of value for FM managers in terms of
supporting with visualized user interfaces decision-making processes
especially related to HVAC systems and thermal comfort. Adafruit
IO Reader could be a prototype for developing more sophisticated
products that help the data management in FM, or it could be integrated
into currently used FM platforms to better streamline workflows with
more exhaustive information during regular management work and
troubleshooting work. The specific contributions of this research is that
the display of sensor data, definition of “fault” (for comfort-defined by
ASHRAE 55 and ISO 7730), and links to the sensors’ locations occur
directly within the BIM software.

Acknowledgement
This research did not receive any specific grant from funding agencies in the

public, commercial, or not-for-profit sectors.

References
1. McGraw-Hill (2019) National BIM Standard-United States. APEC Meeting

Document Database. Accessed.

2. Hosseini MR, Roelvink R, Papadonikolaki E, Edwards DJ, Pärn, E (2018)

Volume 9 • Issue 1 • 1000228

Citation: Kensek K (2020) A BIM-based Visualization Tool for Facilities Management: Fault Detection Through Integrating Real-Time Sensor Data
into BIM. J Archit Eng Tech Res 9: 228.

Page 19 of 19

J Archit Eng Tech Res, an open access journal

Integrating BIM into facility management: Typology matrix of information
handover requirements. International Journal of Building Pathology and
Adaptation 36: 2-14.

3. Matarneh ST, Danso-Amoako M, Al-Bizri S, Gaterell M, Matarneh R (2018)
Developing an interoperability framework for building information models and
facilities management systems. In Creative Construction Conference pp: 1018-
1027.

4. Sensor analytics (2019) IoT Agenda. Accessed.

5. Liu X, Akinci B (2009) Requirements and evaluation of standards for integration
of sensor data with building information models. J Comput Civil Eng pp: 95-104.

6. Suprabhas K, Dib HN (2016) Integration of BIM and utility sensor data for
facilities management. Comput Civil Eng pp: 26-33.

7. Chen J, Bulbul T, Taylor JE, Olgun G (2014) A case study of embedding real-
time infrastructure sensor data to BIM. Construction Research Congress 2014
pp: 269-278.

8. ASHRAE 55 (2017) Thermal Environmental Conditions for Human Occupancy.

9. Lechner N, Heating C (1991) Lighting: Design Methods for Architects. John
Wiley& Sons.

10. Kassem M, Kelly G, Dawood N, Serginson M, Lockley S (2015) BIM in facilities
management applications: A case study of a large university complex. Built
Environment Project and Asset Management 5: 261-277.

11. Yang X, Ergan S (2016) Design and evaluation of an integrated visualization
platform to support corrective maintenance of HVAC problem–related work
orders. J Comput Civil Eng 30: 0401-5041.

12. Teicholz P (2013) BIM for facility managers. John Wiley & Sons.

13. Kensek K (2015) BIM guidelines inform facilities management databases: A
case study over time. Buildings 5: 899-916.

14. Teicholz E (2001) Facility design and management handbook. McGraw Hill
Professional pp:1-39.

15. Riaz Z, Arslan M, Kiani AK, Azhar S (2014) CoSMoS: A BIM and wireless sensor
based integrated solution for worker safety in confined spaces. Automation in
Construction 45: 96-106.

16. Ozturk Z, Arayici Y, Coates SP (2012) Post occupancy evaluation (POE) in
residential buildings utilizing BIM and sensing devices: Salford energy house
example. University of Salford Manchester.

17. Shiau YC, Chang CT (2012) Establishment of fire control management
system in building information modelling environment. In The 1st International
Conference on Software Technology.

18. Razavi SN, Haas C (2009) A data fusion model for location estimation in
construction. In Proc, the International Symposium for Automation and Robotics
in Construction. (ISARC) 26: 1-4.

19. Lee G, Cho J, Ham S, Lee T, Lee G, et al. (2012) A BIM-and sensor-based
tower crane navigation system for blind lifts. Automation in Construction 26:
1-10.

20. Dawes N, Kumar KA, Michel S, Aberer K, Lehning M (2008) Sensor metadata
management and its application in collaborative environmental research. IEEE
pp: 143-150.

21. Knies R (2006) SensorMap Delivers Real-Time Data on the Go. Microsoft
Research Blog. Accessed.

22. Autodesk Dasher 360 (2019) Autodesk. Accessed.

23. Kazado, Daniel, Miroslava Kavgic, Rasit Eskicioglu (2019) Integrating Building
Information Modeling (BIM) and sensor technology for facility management.
ITcon 24: 440-458.

24. Penna, Paola (2019) From Sensors to BIM: Monitoring Comfort Conditions
of Social Housing with the KlimaKit Model. International Conference on
Cooperative Design, Visualization and Engineering. Springer pp: 108-115.

25. Natephraa, Worawan Ali Motamedib (2019) Live data visualization of IoT
sensors using Augmented Reality (AR) and BIM. IAARC pp: 632-638.

26. Hu, Jia, Maulin Patel (2014) Optimized selection and placement of sensors
using Building Information Models (BIM).IES Annual Conference pp: 1-5.

27. Kensek K, Kahn W (2014). Integration of Environmental Sensors with BIM.
Advancing Towards Net Zero 66: 31-39.

28. Bonvini M, Sohn MD, Granderson J, Wetter M, Piette MA (2014) Robust on-
line fault detection diagnosis for HVAC components based on nonlinear state
estimation techniques. Applied Energy 124: 156-166.

29. Sallans B, Bruckner D, Russ G (2006) Statistical detection of alarm conditions
in building automation systems. IEEE pp. 257-262.

30. Liu H, Huang M, Janghorban I, Ghorbannezhad P, Yoo C (2011) Faulty sensor
detection, identification and reconstruction of indoor air quality measurements
in a subway station. IEEE pp. 323-328.

31. Van Every PM (2017) Advanced detection of HVAC faults using unsupervised
SVM novelty detection and Gaussian process models. Energy and Buildings
149: 216-224.

32. Yang X, Koehl M, Grussenmeyer P (2017) Parametric modelling of as-built
beam framed structure in BIM environment. Ads. 42: 651-657.

33. Dong Z (2019) Exploring participatory sensing and the Internet of Things to
develop data-driven thermal comfort models on the USC Campus.

Volume 9 • Issue 1 • 1000228

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Building information modeling (BIM)
	Leveraging BIM for facilities management (FM)
	Sensor data
	Integration of BIM and sensor data
	BIM+sensor data+fault detection

	Background Research
	Understanding the framework of BIM for FM
	Integration of sensor data into BIM
	Fault detection algorithms

	Methodology- Adafruit io Reader Tool
	Preparation
	Tool development
	Detailed workflow of tool development

	Watt Hall Case Study
	Overview
	Software

	Discussion and Future work
	Limitations
	Future work

	Conclusion
	Acknowledgement
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19
	Figure 20
	Figure 21
	Figure 22
	Figure 23
	Figure 24
	References

