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Introduction
In the process of controlling muscle activation, a motor command, 

which controls certain contraction level in a muscle, is generated in the 
motor area and transmitted through each motor neuron as a neural 
pulse train of action potentials [1]. The changes of the pulse density 
with neural recruitment correspond to the levels of motor commands. 
The action potentials from motor neurons are transmitted to muscle 
through end-plates and propagated to both tendons. Electromyography 
(EMG), which records the action potentials of a muscle, has been used 
in research and clinical applications of muscle activation.

In this study, we proposed the methods to reconstruct the motor 
commands by means of computation of detected pulse density from 
the EMG and validated the accuracy of reconstructing the motor 
commands with computer simulation.

The principal of reconstructing motor commands

The change of the pulse density in each of the motor neurons, if 
superimposed over a whole muscle, corresponds to the time pattern of 
the motor commands smoothened by transmission characteristics in 
the neural passage.

While muscle fibers connected to each motor neuron contract, the 
action potentials propagate along the muscle fibers. The bipolar surface 
electrodes for recording muscle activation are typically placed along the 
axis of the muscle fibers. The action potentials of the muscle fibers have 
tri-phasic pulses and are recorded with the electrodes as an EMG signal 
[2,3]. The time pattern of the motor commands is reconstructed by 
measuring time change in pulse density, after correcting the difference 
in amplitude among pulse trains caused by attenuation due to the 
distance from the motor neurons to the electrodes or the size of the 
motor unit.

A strategy for assessing accuracy of estimating motor 
command

Integrated EMG (IEMG) or root mean square (RMS) of EMG 
signals for computing the amplitude has been used widely to estimate 
the muscle activation or force level [4-6]. IEMG and RMS can be simply 
computed with the values of the EMG data. However, it is well known 
that the relationship between the force and the amplitude of EMG data 
could not be fitted by a single linear function in a high force level [7]. 
Validation would also be needed so that the result of reconstructing the 
motor command by data processing holds reasonable accuracy, even 
when the contraction of a muscle is very strong and the pulse density is 
very high because multiple action potentials would interfere with each 
other, making it difficult to identify the pulses from the EMG signal.

In order to assess the accuracy of the processing, a strategy using 
a computer simulation of estimating motor command is proposed. 
Between the processes of generation of neural pulses and observation 
of EMG, there are two signals, namely, the motor commands and the 
density modulated pulse trains for a muscle, which correspond each 
other.

If real EMG is used for data, it is not possible to observe explicitly 
the time pattern of the motor commands and the density modulated 
pulse trains. However, if all the steps involved in the processes of 
generating neural pulses in the motor neurons and observation of EMG 
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are simulated in a computer, by introducing the neurophysiological 
properties as real as possible, the known generated motor commands 
and neural pulses serve as the reference for the detailed analysis of the 
nature of errors in the result obtained by the processing [8].

Methods
Procedure of generation of EMG

Following the sequence of the computer simulation program, 
neural pulse trains in each of the motor neurons before and after 
synapse were generated from motor command and the waveform of 
bipolar electrode EMG was synthesized (Figure 1). The characteristics 
of neural transmission were set by referring to the physiological data, 
and the number of motor units was chosen to be large enough for 
representing the motor commands of a muscle. A tri-phasic waveform 
of the action potential (Figure 2) was used for signal synthesis. The 
process of simulation consisted of the specification of the time pattern 
of the motor command, generation of pulse train in the motor neurons 
with low and high sensitivities, synthesis of EMG waveform from the 
near and far motor units with different attenuation (Figure 1d and 1e), 
detection of pulse train, and reconstruction of the time pattern of the 
motor command (Figure 1g).

Then, the pulse trains were detected from the EMG signal by pulse 
shaping, and the motor command of a muscle was reconstructed by 

measuring change in pulse density. Each time when a pulse was 
detected, the whole typical tri-phasic waveform of an action potential 
was subtracted from the EMG waveform. The sizes of motor units were 
considered as the same in this study.

The computer simulation program for the generation of EMG and 
reconstructing motor commands were executed as follows:

1. Specification of the time pattern of the motor command for a muscle.

2. Assignment of average characteristics of motor neurons before 
synapse and their random fluctuation.

a) Sensitivity of pulse generation in each pulse generator.

b) Refractory period in each pulse generator.

3. Generation of neural pulse train in each motor neuron before 
synapse.

4. Assignment of average characteristics of motor neuron after 
synapse and their random fluctuation.

a) Delay time of pulse regeneration at each synapse.

b) Refractory period at each synapse.

5. Generation of neural pulse train in each motor neuron after 
synapse.

6. Synthesis of the EMG waveform.

a) Assignment of the waveform of tri-phasic action potential.

b) Assignment of location of the motor units around the electrodes.

c) Computation of the interfered waveform by bipolar electrodes.

(a) Specified time pattern of the motor command
Amplitude

(b) Generated pulse trans in the motor neurons
Low sensitivity
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(c) Pulse train (positive side) (8 motor units)
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Extracted by pulse shaping (half-height: false)

(d) Generated EMG waveform
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(e) 8 motor units for each of bipolar electrodes
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Figure 1: A series of examples in each steps of the process of computer 
simulation of generation of EMG.
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Figure 2: Normalized tri-phasic waveform of the action potential used in 
synthesis of EMG.
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Figure 3: Correspondence of reconstructed time pattern of the motor 
command to the theoretically generated one.
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d) Synthesis of the EMG waveform.

7. Detection of the pulse trains from the EMG waveform by pulse 
shaping.

a) Set thresholds of the period and amplitude of the peaks of the 
pulses.

b) Register the time point of the pulse, which is larger than the 
threshold.

8. Reconstruction of the time pattern of the motor command by 
measuring pulse density.

9. Generation of the theoretical time pattern of the motor command.

The methods for detection of the pulse trains from the EMG 
waveform were the same methods used to investigate optimum 
electrode locations, far from innervation zone, for recording surface 
EMG signal by detected pulse-averaging as in the former report [9].

The software used in the present study was developed using 
QuickBASIC 1.0 (Microsoft) and the sampling rate for computer 
simulation and synthesis of EMG waveform was set to 8,000 Hz.

Results
It was shown that the reconstructed time pattern of the motor 

command by means of these methods corresponded fairly accurately 
to the theoretically generated one, except for a few missing pulses in 
the motor units far from the electrodes, and a few false pulses caused by 
interference between high density pulse trains (Figure 3). 

Discussion
The results of this study indicate that these proposed methods 

provide a direct approach to assessing the accuracy of reconstructing 
the motor commands. A few studies previously suggested that the 
motor commands were estimated from the surface EMG signal with the 
amplitude or specially designed multi-channel electrodes [10,11]. In 
this study, the processes of reconstruction of the neural pulse train and 
attenuation of EMG signal by the distance between the motor neurons 
and the usual bipolar electrodes were included in this simulation for the 
practical reconstructing of motor commands.

The ratio of detecting correct pulses would saturate at a value less 
than 100%, because closely located pairs of positive and negative pulses 
cancel each other in the theoretical EMG signal. In this study, the ratio 
of detecting false pulses increases when the third phase of the waveform 
of action potentials from a smaller amplitude pulse train was detected. 
However, the process of computer simulation could be modified in any 
complex way, if necessary for further analysis.

An action potential waveform

The typical action potential signal has been simulated with an EMG 
signal recorded using a pair of bipolar electrodes on the skin surface 
[12,13]. The calculated action potential is tri-phasic: the first and second 
phases and the amplitude of the low third phase amounts to 5-10% 
of the peak-to-peak amplitude. The first phase (or the second phase) 
has either a positive or a negative peak depending on the conduction 
direction [14]. In this study, the several sizes of tri-phasic waveforms 
were set to synthesize a theoretical EMG waveform.

Application for a real surface EMG signal

These proposed methods could be used for real EMG. However, 
several factors would have to be considered more for the actual 

application. The noises, which could be detected incorrectly as a 
pulse of action potential, are included in the real EMG signal. In this 
study, the EMG signal was synthesized under the assumption that the 
bipolar surface electrodes were placed along the axis of muscle fibers. 
However, the arrangement of muscle fibers can differ, depending on the 
anatomical structure of the muscle, which affects the EMG signal and 
appears to limit surface EMG analysis at this time [9,15].

Cross-talk, which involves signals generated from muscles other 
than the target muscle, must be minimized for accurate analysis. 
Double differentiation through the use of multiple electrodes is a 
general technique for reducing cross-talk [16,17].

Conclusions
The computer simulation proposed in this strategy has been 

executed preliminarily, and a promising result is suggested in this 
present study. Based on these results, it becomes possible to further 
assess the accuracy of these methods when reflecting neural pulses 
from the sensors in the muscle are introduced.
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