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Abstract
Petroleum engineers are often interested in the phase envelope that describes the characteristics of the pore 

fluids. These phase envelopes are normally generated by conducting laboratory measurements involving expensive 
PVT equipment and trained personnel. By using an Equation of State (EOS) based computer model that requires 
some hydrocarbon composition data, these envelopes can be generated almost instantly.

An algorithm for generating a complete phase envelope using computer modeling was proposed by Michelsen. 
His procedure, based on EOS modeling, may sometimes suffer from convergence issues, especially near the critical 
region. In addition, his procedure requires the partial derivatives of fugacity, which are often difficult to get. 

In this work a phase behavior model was developed that incorporates some modifications to Michelsen’s 
algorithm avoiding the need for calculating these derivatives, which in turn put fewer requirements on the data and 
computation. These modifications allowed running the model successfully for different hydrocarbon systems without 
any convergence issues. Because the new model does not have to deal with the partial derivatives of fugacity, it can 
work with any EOS based phase behavior model.

The new method has been applied to three different reservoir fluids and shows an exact match with the phase 
envelope generated using commercial software.

Keywords: Phase envelopes; Fugacities; Interpolating polynomial; 
Dew point

Abbreviations: EOS: Equation of state; PR: Peng-Robinson; SRK: 
Soave-Redlich-Kwong

Nomenclature
f :          Mole fraction

K:         Equilibrium Ratio

z:          overall composition in mole fraction

Subscripts

i:           Component

v:          Vapor

Introduction
Phase envelopes can be generated, in principle by performing a se-

ries of saturation pressure calculations at specified temperatures. But 
this method is not recommended as it is time consuming and is sus-
ceptible to convergence problems at higher pressure and temperature 
conditions. Michelsen [1] proposed a procedure for phase envelope 
generation by first starting the calculation at moderate pressure/tem-
perature conditions and then using the K-values, and fugacities of pre-
vious saturation points to estimate the next saturation point. This pro-
cedure ensures a reasonable initial estimate and creates no problems 
when the data passes through the critical point. However, Michelsen 
uses the Newton-Raphson technique for solving the non-linear equa-
tion to calculate successive saturation points. His method is robust and 
allows a rapid construction of the phase envelope. Because his method 
is based on the Newton-Raphson method, it requires the first partial 
derivatives of the component fugacities with respect to pressure and 
temperature to populate a Jacobian matrix.

Calculation of the first partial derivatives of the component fugaci-
ties may not be practical to obtain analytically for some EOS that have 

complicated equations for fugacities. Therefore, numerical techniques, 
such as the finite difference method, are often used to obtain the first 
partial derivatives of the component fugacities. 

Most of the convergence issues arise from selecting the initial 
K-values that are not within the radius of convergence of the numerical 
method being used. It is therefore, of paramount importance that 
the K-values be initialized correctly especially in the critical region. 
Michelsen uses the interpolating polynomials to estimate the K-values 
for the next points.

Proposed Modifications

Two phase flash algorithm using an EOS: Generally the non-
linear Muskat-McDowell [2] equation is solved using the Newton-
Raphson method but the Newton-Raphson method may often diverge 
from the correct solution.
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The Newton-Armijo method can be used to solve the Muskat-
McDowell equation in a reliable method. The code for two-phase flash 
calculations in this study was developed using the Newton-Armijo 
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method. The flash procedure can be used to find: liquid and vapor 
phase Z-factors, fugacities, molar compositions, and K-values and 
mole fraction vapor/liquid.

Phase envelope generation procedure: This paper proposes the 
following modifications to the phase envelope generation procedure 
described by Michelsen. These modifications make the original 
procedure more robust and provide an alternate way of solving the 
non-linear problem in simpler terms.

K-value initialization: The K-values are initialized by Wilson’s [3] 
method only at the initial point of the phase envelope. Since this is done 
at a moderate pressure and temperature, it guarantees convergence [1]. 
Each successive calculation uses K-values extrapolated using the PWCH 
(Piece-Wise Cubin Hermite) interpolating polynomials with the flash 
calculation performed at preceding Pressures and Temperatures. This 
ensures convergence. 

Initializing the EOS flash calculations this way avoids all 
convergence-related problems with a few rare exceptions. In the case of 
such an event the Pressure and Temperature steps can be reduced and 
the calculations can be repeated.

Bisection method: The bisection root finding method is used 
to find the saturation points. This does not require the first partial 
derivatives of fugacity and this method is used in place of the 
multidimensional variant of the Newton Raphson Method, which 
relies on forming a Jacobian of first partial derivatives of fugacity with 
respect to temperature, pressure and composition. 

The desirable property of the Newton-Raphson method is its ability 
to converge to a solution quadratically. This essentially means that it 
should take up to four iterations to converge to a solution on a double-
precision floating point machine when starting from a guess that is 
accurate up to 1 decimal place. However, the property of quadratic 
convergence is only realized in certain cases where the initial guess 
is really close to the root (within the radius of convergence). Beyond 
the radius of convergence, the Newton-Raphson method falls back to 
linear convergence and may fail to converge in some cases. Since the 
bisection method converges linearly to the solution, it will take up to 
16 iterations to converge on a double-precision floating point machine, 
starting from a guess value accurate up to 1 decimal place. Although it 
will be significantly slower, the bisection method is failsafe and always 
converges to the solution [4]. Additionally the bisection method 
does not require the partial derivatives of fugacity. Hence it is easier 
to program the codes and in some instances the bisection method 
works as good as the Newton-Raphson method in terms of number 
of computations since the derivatives are not being calculated at each 
iteration level [4].

Interpolating polynomials: Another modification done in this 
study is the use of interpolating polynomials in which the results of the 
previous saturation point calculations are used to find an interpolating 
polynomial. This polynomial is then used to extrapolate over a small 
pressure or temperature range, to estimate the next saturation point 
and also the K-values at this point. This new saturation point and 
K-values are then used to initialize the bisection calculation, which 
converges much quickly because it is closer to the actual solution. 

Modified algorithm

The complete algorithm along with modifications is described 
below:

Bubble point line calculation: Run the EOS flash calculations on 

increasing pressures steps at an isotherm and look for a sign change 
on mole fraction vapor. Run PWCH interpolation to find an estimate 
of saturation pressure. Run the bisection root finding method on this 
estimate to find the exact Saturation Pressure for this temperature.

Then on the next isotherm start from this pressure and keep 
increasing the pressure until maximum specified pressure is reached. 
Use interpolation, followed by bisection, to find the next bubble 
point pressure at the next isotherm. Continue for two more steps like 
this, while using the K-values from previous pressure temperature 
conditions to initialize the EOS flash calculation to ensure convergence.

To accelerate calculation speed, these four points can be used to 
extrapolate the saturation pressure along with its K-values for the next 
isotherm. In this way, the use of brute force searching for sign change 
can be avoided all together. Use bisection root finding method on 
this extrapolated bubble point pressure to find an exact bubble point 
pressure within the specified tolerance.

This acceleration leads to quicker calculation of bubble point 
calculation and no problems are encountered while passing through 
the critical point. The procedure is repeated until the root finding sub-
routine fails, which only happens when the temperature exceeds the 
cricondenthem; i.e. only a vapor phase is encountered everywhere on 
the isotherm (Figure 1).

Dew point line calculation: The dew point line calculation can 
be done similar to bubble point line calculation. Only this time the 
temperature is reduced instead of increasing it. This is because the 
initial calculations are done farther away from the critical point to 
ensure convergence. Similarly run the EOS flash calculations on a 
number of different pressures at an isotherm (maximum specified 
temperature) and look for a sign change on mole fraction liquid. Run 
PWCH interpolation to find an estimate of dew point pressure. Run the 
bisection root finding method on this estimate to find the actual dew 
point pressure at this temperature.

Then on the next (lower) isotherm start from this pressure and keep 
increasing the pressure until maximum specified pressure is reached. 
Use interpolation followed by bisection to find the next bubble point 

 

Figure 1: Flow Chart of Generating the Full Phase Envelope.
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pressure at this next isotherm. Continue for two more temperature 
steps like this while using the K-values from previous pressure and 
temperature conditions to initialize the EOS flash calculation to ensure 
convergence.

To accelerate the calculation speed, these four points can be used to 
extrapolate the dew point pressure along with its K-values for the next 
(lower) isotherm. In this way, the use of brute force searching for sign 
change can be avoided altogether. Use bisection root finding method 
on this extrapolated dew point pressure to find the exact dew point 
pressure within the specified tolerance.

Half mole fraction vapor and other quality lines: Similarly the 
procedure can be repeated for looking for a sign change on mole 
fraction liquid less one half to generate the half-mole-fraction-vapor 
quality line and other quality lines.

Advantages of modified phase envelope algorithm: No partial 
derivatives requirement is placed on fugacity with respect to Pressure, 
Temeprature, K-values etc. This in turn means that any EOS can be 
used with this algorithm without knowing the partial derivatives of 
fugacity. This is useful because of some disadvantages of the Newton-
Raphson method which may be encountered in rare cases. These rare 
cases can be realized during the EOS calculations at high pressures and 
especially near the critical point where the Newton-Raphson method 
struggles with convergence. Moreover, the Newton-Raphson method 
may not be applicable if obtaining the derivatives of fugacity is difficult 
or cumbersome. 

Following disadvantages of Newton’s method prompted the use of 
Bisection method for the phase envelope generation calculations:

1. Requirement of direct evaluation of derivatives. The 
derivatives may be obtained numerically which reduces the Newton’s 
method to the Secant method which has the same convergence rate as 
Bisection method. Because the real power of Newton’s method lies with 
the “Quadratic convergence rate” associated with it, reducing it to the 
secant method only gives a linear convergence rate and therefore, loses 
its advantage over the Bisection method.

2. Initial guess not close to root: If the initial guess is not in the 
radius of convergence for the Newton-Raphson method, the method 
may fail. 

3. Stationary point: If the stationary point of the function 
is encountered, the method will terminate due to division by zero. 
This will happen because the function derivative is zero causing the 
Newton’s method to blow. This can also happen if the derivative is close 
to zero.

4. Overshoot: If the first derivative is not well behaved in the 
vicinity of the root, the method may overshoot and diverge to infinity.

The Bisection method does not suffer the disadvantages associated 
with derivatives and is simpler and robust. In fact a black-box EOS can 
be programed to run with this algorithm and the only requirement 
from the EOS would be mole fraction vapor (or liquid) at specified 
pressure and temperature conditions and no requirement of fugacity 
or partial derivatives of fugacity is placed on the EOS. This algorithm 
can also provide initializing K-values to the black-box EOS to aid in 
convergence of flash calculation and also an overall acceleration of 
computation because extrapolated K-values will be closer to the actual 
K-values (or K-values initialized by Wilson equation).

Validation of the proposed algorithm: The phase envelope 
generation was verified against commercial software by commercial 
software which uses the Michelsen’s algorithm to generate the phase 
envelope. Phase envelopes were generated using the commercial 
software and the modified algorithm on three real field datasets. These 
datasets include:

1. A light oil sample

2. A rich gas condensate

3. A lean gas condensate

Figures 2-7 show a comparison of the results from the derivative-
fewer algorithms proposed in this paper and the phase envelope 
generated using the commercial software. The results match exactly, 
validating the proposed algorithm. Figures 2-7 show that the phase 
envelopes generated using the proposed algorithm and the commercial 
software are superimposed. This is expected since both are generated 
using the same EOS on respective datasets. If the results were not 
superimposed, that would suggest a problem with the algorithm. The 
proposed algorithm mimics exactly the phase envelope generated using 
Michelsen’s algorithm while incorporating a derivative-less technique 
and predicts the exact same results.

Figures 2 and 5 show the phase envelopes of a light oil composition 
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Figure 2: Phase Envelope Generated by SRK EOS on a Light Oil 
Composition.
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Figure 3: Phase Envelope Generated by SRK EOS on a Lean Gas 
Condensate Composition.
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(Table 1). Figure 2 was generated using the SRK [5] equation of state 
using commercial software and the algorithm presented in this thesis. 
The results superimpose on top of each other, validating the algorithm. 
Figure 5 was generated using the PR [6] equation of state, and it shows 
a comparison which also resulted in an exact match against commercial 
software, also validating the algorithm presented in this report.

Figures 3 and 6 show the phase envelopes of a Lean Gas Condensate 
fluid system (Table 2). Figure 3 was generated using the SRK EOS and 

again it shows an exact match against commercial softwre. The quality 
lines also match up properly suggesting that the algorithm is working 
properly. Similarly for Figure 6, which was generated using the PR 
EOS, the results are an exact match.

Figures 4 and 7 show the phase envelopes of a rich gas condensate 
system (Table 3). Figure 4 was generated using the SRK EOS, while 
the Figure 7 was generated using the PR EOS. The comparison against 
their respective commercial software generated plots is an exact match 
and no deviation is noticed anywhere on the phase envelope. This 
sufficiently verifies the proposed algorithm.

The above results showed that for the three completely different 
fluids used to generate the phase envelopes, an exact match of the dew 
point line, bubble point line and on the quality lines can be obtained 
using the proposed method. This verifies the algorithm against Mi-
chelsen’s algorithm for PR EOS and SRK EOS.

Uncertainty analysis: The described algorithm solves the optimi-
zation problem without derivatives. It depends on the Equation of State 
being used, but more importantly it depends on the quality of input 
data. This is also true if any other algorithm is used to solve this prob-
lem, such as any commercial software.
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Figure 4: Phase Envelope Generated by SRK EOS on a Rich Gas 
Condensate Composition.
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Figure 5: Phase Envelope Generated by PR EOS on a Light Oil 
Composition.
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Figure 6: Phase Envelope Generated by PR EOS on a Lean Gas 
Condensate Composition.
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Figure 7: Phase Envelope Generated by PR EOS on a Rich Gas 
Condensate Composition.

Composition Mole Percent (%)
N2 0.16

CO2 0.91
H2S 0
C1 36.47
C2 9.67
C3 6.95
iC4 1.44
nC4 3.93
iC5 1.44
nC5 1.41
C6 4.33

C7+ 33.29

C7+ Properties:
Molecular Weight: 218

Specific gravity: 0.8515

Bubble Point Pressure of Oil at 220F = 2620psia (Used for matching) 

Table 1: Light Oil Composition Used for Phase Envelope Calculations.
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Mathematical Solution Techniques
Newton-Raphson method

Also known as the Newton’s method, this method is used for 
solving f(x) = 0. For the one variable case we start with an initial guess 
x0 and iterate to find the next value using the following equation.

( )
( )1

n
n n

n

f x
x x

f x+ = −
′

                   (3)

This consideration can also be extended to the case of more than 
one variable. It has the desirable property of converging to a solution 
quadratically.

This method requires the function to be continuously differentiable 
[4] and also note that if at any iteration the first differential, f’(xn ) = 0 
this method will terminate. Moreover in many instances, it if the first 
derivative of the function is close to zero near the root, this method will 
diverge [4]. Table 4 shows such an example where Newton-Raphson 
method fails. Further disadvantages of this method are discussed in 

subsequent sections of this thesis where the practical application of 
this method is considered for flash calculations and phase envelope 
generation.

Newton-Armijo method

Since Newton’s method may fail for a bad initial guess, the method 
may blow up due to division by small numbers. For example in the 
case of f (x) = tan−1(x) when given a sufficiently large starting value x0 
= 2 (Figure 8).

Subsequent iterations blow up, reaching xn = 1021 in seven iterations. 
The increase in | xn+1 - xn | is not necessarily the evidence of failure 
although it does indicate that the region of quadratic convergence has 
not yet been reached. But the increase in successive values of | f(xn) | 
suggests a problem. 

The backtracking idea is to reduce the Newton step as needed to 
avoid catastrophic overshoot. The Armijo backtracking algorithm can 
be simplified as:

1. Start at a current iterate xn, and evaluate fn = f(xn) and sn = -fn/ 
f’(xn). Initialize t = 1.

2. Compute a trial step yn,t = xn + tsn.

3. Compute f (yn,t).

4. If |f (yn,t)| < β |f(xn)| for some specified β =1, then accept the 
step. Set xn+1 = yn,t. Check for convergence: if converged, stop; otherwise, 
return to step 1.

5. Decrease t and return to step 2. The most common step 
reduction is to reduce t by a factor of 2.

The Newton-Armijo method attempts to compensate for a poor 
initial guess by backing off from a full Newton step when it does not 
reduce the residual. This method serves as a modification to Newton’s 

Composition Mole Percent (%)
N2 0.47

CO2 2.42
H2S 0
C1 68.22
C2 11.8
C3 5.46
iC4 0.83
nC4 1.74
iC5 0.72
nC5 0.74
C6 1.07

C7+ 6.53

C7+ Properties:
Molecular Weight: 148

Specific gravity: 0.793

Dew Point Pressure at 275F = 4521psia (Used for matching)

Table 2: Lean Gas Condensate Composition Used for Phase Envelope 
Calculations.

Composition Mole Percent (%)
N2 1.35

CO2 0.4
H2S 0
C1 72.69
C2 7.84
C3 3.85
iC4 1.04
nC4 1.63
iC5 0.7
nC5 0.78
C6 1.59

C7+ 8.13

C7+ Properties:
Molecular Weight: 148

Specific gravity: 0.793

Dew Point Pressure at 225F = 4800psia (Used for matching)

Table 3: Rich Gas Condensate Composition Used for Phase Envelope Calculations.

 

Figure 8: Newton-Armijo Algorithm.

n xn |xn − xn+1| f(xn)
0 2 - 1.107
1 -3.535 1.107 -1.295
2 13.951 5.536 1.499
3 -279.344 293.295 -1.567

Table 4: Newton-Raphson Method for solving f(x) = tan-1(x).
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method with backtracking regulated by Armijo condition; hence it is 
often called Newton-Armijo method. It has the advantage of falling 
back, essentially, to bisection in case the Newton step begins to blow 
up. This is desirable for functions that tend to cause convergence issues 
like the example stated above of f(x) = tan-1(x).

Bisection method

This method works by first finding the interval containing the 
root by looking for a sign change. At each step the method divides the 
interval into two by computing the midpoint c = (a+b)/2 of the interval 
and the value of the function f(c) at that point. Unless c is itself a root 
(which is very unlikely, but possible) there are now two possibilities: 
either f(a) and f(c) have opposite signs and bracket a root, or f(c) and 
f(b) have opposite signs and bracket a root. The method selects the 
subinterval that is a bracket as a new interval to be used in the next 
step. In this way the interval that contains a zero of f is reduced by 
half at each step. This process is continued until the interval becomes 
sufficiently small (Figure 9).

The method is guaranteed to converge to a root of f if f is a continuous 
function on the interval [a, b] and f(a) and f(b) have opposite signs. The 

absolute error is halved at each step so the method converges linearly, 
which is slower than the Newton’s Method.

SI Metric Conversion Factors

degree F (oF-32)/1.8 = oC

psi  × 6894757 = kPa

Conclusions
In this work a new algorithm for phase envelope generation 

was suggested. This algorithm does not depend on the derivatives 
of fugacity and is simpler to program for EOS that has complicated 
functions of fugacity. 

The following additional observations were made for the proposed 
algorithm:

1. The proposed algorithm works well without any convergence
issues.

2. Phase envelopes can be easily generated for any EOS and
without the requirement of partial derivatives of fugacity.

3. This algorithm is best applied to EOS whose fugacity functions
are complicated and highly non-linear.

4. This algorithm is verified against the commercial software
which uses Michelsen’s algorithm.

5. The modification of Newton-Armijo makes the VLE flash
algorithm more robust.
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