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Introduction
Brain injury comes from various pathological conditions. Among

those, acute brain injuries such as trauma and ischemia are mainly
caused in the oxidative stress of brain cells [1-3]. Labile zinc
accumulation in the brain significantly contributes to oxidative brain
injury [4-8]. On the other hand, neurodegenerative diseases including
amyotrophic lateral sclerosis (ALS), Parkinson’s (PD), Alzheimer’s
(AD), and Huntington’s (HD) are caused by progressive loss of
structure or function of neurons. Different neurodegenerative
disorders show many parallels including atypical protein assemblies as
well as induced cell death [9,10]. Unlike the case of oxidative injury,
zinc deficiency in the brain aggravates chronic neurodegeneration
[11], suggesting that zinc dyshomeostasis plays a key role in the brain
diseases.

Together with ubiquitin-proteasome pathway, autophagy-lysosome
pathway has an important role in clearing of troublesome proteins and
organelles [10]. Especially, zinc in lysosomes has a crucial role in
autophagy pathway [11-13]. Metallothionein-3 (Mt3) is a zinc-binding
protein enriched in the central nervous system (CNS) [14,15] and its
deficiency also has a crucial role in the autophagy as well as amyloid
beta (Aβ) endocytosis in the brain, thereby finally leading to AD as
well as oxidative brain injury [11]. Here, we explain in detail how Mt3
is involved in two different brain injuries.

The Role of Mt3 in Oxidative Brain Injury
Zinc plays a major role in neuronal and glial oxidative injuries

[5,16,17]. In peroxynitrite- and hydrogen peroxide (H2O2)-induced
cell death, increases in free zinc levels induced p38 kinase activation
and apoptosis [12,18,19]. Of many zinc sources, Mt3 is one of the
major regulators of cellular zinc in the brain because this protein
contains metal-cystein content in it and zinc has a high affinity for this
protein. Therefore, Mt3 is able to accept or release zinc in response to
changes in oxidative status [20,21] (Figure 1).

Except for its function as a zinc buffer, Mt3 may have more complex
effects in the brain. The biological functions of Mt3 in the oxidative
brain injuries may be from increased lysosomal enzyme activity and
autophagy [8,12]. Various oxidative stressors initiate lysosomal
membrane permeabilization (LMP), and thus a large amount of
lysosomal enzymes containing proteases cathepsins are secreted from
lysosomal lumen into cytosols. The secreted enzymes further activate
caspases, finally leading to apoptotic cell death [8]. Besides, autophagic
cell death mechanism has been recently proposed, as certain forms of
cell death are attenuated by inhibition of autophagy [3]. A growing
body of evidence shows that autophagic death contributes in acute
brain injury [22,23]. A study with cultured model of oxidative cell

injury revealed that Mt3 plays a key role in astrocytic cell death [12].
That is, Mt3-null mice presented altered mobility of lysosomal
membrane protein 1 and reduced activity of lysosomal enzymes [12].
Abnormal function of lysosomes contributes to autophagy defect
because lysosomes are the endpoint organelle in the autophagy
pathway [24]. For this reason, Mt3-null condition may serve the
beneficial effect on oxidative injury because the desensitization of
lysosomal rupture and defect of autophagosome-lysosome fusion
consequentially protect cells from apoptotic and autophagic cell death
[8,12,16].

Figure 1: Summary diagram depicting Mt3 effects on different brain
diseases. Under acute injurious oxidative stress conditions (A), zinc
release from Mt3 is accelerated, and excess autophagy is activated.
Exaggerated autophagy and zinc accumulation in lysosomes
ultimately leads to LMP and cell death. However, under the
degenerative conditions (B), released zinc from Mt3 activates actin
dynamics as well as autophagy, and complete lysosomal clearance of
unwanted protein aggregates such as mutant huntingtin, aberrant
amyloid beta improves cell survival.

The Role of Mt3 in Neurodegenerative Disorders
Like two sides of the same coin, Mt3-null condition indicates a

different effect depending on the type of encephalopathy. For instance,
contrary to its positive effect in oxidative brain injury, knock-out of
Mt3 negatively influences on neurodegenerative disease [25,26].
Degenerative brains show a decrease in the function of lysosome and
autophagy, thus highly accumulating autophagosomes in diseased
brains [27]. Unwanted proteins in cells disturb cell to cell
communication in brain. Autophagy largely contributes to recycling of
cellular proteins by clearing of unnecessary proteins and it partly
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serves smooth synaptic transmission in the brain. Mt3 level is
downregulated in the AD brain [25,28] and Mt3-null astrocytes
indicated low level of zinc in lysosome and autophagy defect [12].
Moreover, decrease in lysosomal zinc level contributes to mutant
huntingtin (mHtt) aggregates in GFP-tagged mHtt polyglutamine
(polyQ) expansion 74-transfected astrocytes [13], suggesting that
cellular zinc plays a key role in degenerative brains.

Aβ is the main component of amyloid plaques and the most
damaging form of Aβ may be oligomeric Aβs rather than the plaques
themselves [29]. For this reason, misfolded oligomeric Aβs in
extracellular space should be cleared by microglia and astrocytes
because they block cell to cell signaling at synapses [30,31]. Thus, Aβs
clearance has a key role in the pathologies of AD. Uptake of oligomeric
Aβs in cultured astrocytes occurs mainly in a clathrin-dependent
manner with a help of actin cytoskeleton, indicating that the role of
actin is pretty important for endocytosis [11]. It has been recently
found that disruption of actin cytoskeleton blocks Aβs endocytosis and
the absence of Mt3 resulted in a defect in actin polymerization [32],
thereby Aβs uptake in Mt3-null astrocytes noticeably decreased [11].
Therefore, AD and PD are accelerated by Mt3-null condition but
etiological mechanisms are different.

Conclusion and Discussion
Deficiency in Mt3 may lead to two different changes in the brain,

which are lysosomal biogenesis and cytoskeleton dynamics.
Specifically, in the oxidative brain injury, knock-out of Mt3 may
protect cells from oxidative damage because of desensitized lysosomal
biogenesis and autophagy process. However, in the case of
degenerative brain, dysfunction of lysosomes and actin cytoskeleton in
Mt3-null astrocytes may contribute to accumulation of damaged
proteins and toxic Aβs proteins. Except the function of Mt3 in
lysosomes and cytoskeleton, metal-ion homeostasis by Mt3 may also
play an important role in neurodegenerative diseases [33]. In PD,
Cu(II) removal from the α-synuclein (α-Syn)-Cu(II) complex by
thiolate ligands of Mt3 efficiently prevents α-Syn and dopamine
oxidation, α-Syn oligomerization, and ROS formation [34].

Apart from the features of Mt3 described herein, Mt3 has other roles
in the human diseases. Mt3 induction may serve as anti-inflammatory,
anti-apoptotic agent and provides protection in cell therapy because
zinc from Mt3 augments transcriptional regulation of genes involved
in growth, cell proliferation, and differentiation [35]. Even though the
role of Mt3 has not been clearly clarified yet and reported effects of
Mt3 are not consistent, Mt3 may be closely associated with various
cancers. In the bladder [36], breast [37,38], and prostate cancers [39],
Mt3 expression was highly elevated and this alteration acted as a poor
prognostic indicator. On the contrary, Mt3 level was downregulated in
gastric carcinoma [40] and esophageal squamous cell carcinoma
(EACs) [41]. In particular, it has been found that DNA methylation at
-127 to -8 CpG sites of the promoter of xis essential for Mt3 mRNA
expression. In addition, as significant hypermethylation at different
sites within the promoter of Mt3 has been observed in EACs [42],
aberrant patterns of DNA methylation may directly lead to the severe
human disorders. As both the DNA methyltransferases (DNMTs) and
some histone methyltransferases (HMTs) play a role in the
establishment and maintenance of DNA methylation in mammals
[43,44], inhibitors of these enzymes might serve as the novel
therapeutic strategies for the Mt3 associated human diseases. Taken
together, control of Mt3 function in human may offer hope for the

therapeutic advances that could ameliorate many disease
simultaneously.
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