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Abstract
With the completion of the human genome project and the complete genome sequencing of other organisms, 

huge databases cataloguing the various molecular “parts” of complex biological systems, have been opened up 
to scientists. As huge volumes of high throughput experimental data become available, the focus is shifting from 
studying biological systems as static models of loosely linked molecular devices to understanding their ensemble 
dynamics. In this work, we present a discrete event based stochastic modeling approach for studying the molecular 
dynamics of cells. In this approach, a biological process is modeled as a collection of interacting functions driven in 
time by a set of discrete events. We develop the simulation methodology and present the mathematical formalism 
underlying the in silico system. We present the core components of the simulation framework, called iSimBioSys, 
which interactively simulates the dynamics of a biological process. As a test bed for illustrating our approach in 
studying cell dynamics, we model the two component PhoPQ system, responsible for the expression of several 
virulence genes in the gram-negative bacteria Salmonella Typhimurium. We analyze the effect of extracellular 
magnesium on the behavioral dynamics of this pathway using our framework and validate the results with a wet-lab 
experimental system. We also analyze the performance of iSimBioSys as a biosimulation tool, based on the model 
biological system in terms of system usage and response. We envision that such a discrete event based stochastic 
biosimulation platform can provide a generic, computing paradigm for testing various hypotheses of an experiment 
“in silico”.

Keywords: In silico modeling and simulation; Stochastic modeling;
Discrete event simulation; Bio-simulation

1. Introduction
Traditionally, the key focus of biology has been on detailed

understanding of single genes, molecules or processes involved in 
particular phenotypic manifestations. This powerful approach has 
resulted in a significant understanding of the structure and function of 
individual genes and proteins. In the recent past, with the development 
of high throughput micro array experiments and bio chips, an explosive 
amount of empirical data on the molecular foundations of biological 
structures and functions [1] have been opened up to researchers. 
Complete genomic sequencing of new organisms has been completed 
and advanced databases like Genome Bank (GenBank), Protein 
Database (PDB), which store comprehensive annotations of genomic 
and protein structures, are being developed at previously unimaginable 
rates. Concomitant with this development, a large body of knowledge 
is being derived from different biological pathways activated by 
different regulatory genes, hormones and metabolic reactions through 
fluorescence tagging and other types of advanced in-vitro experiments. 
These results are captured in a large volume of scientific papers and 
experimental data in PubMed [2] and other databases. However, as 
more and more data become available, biologists are now looking 
beyond 2 assigning functions to individual genes – focusing on dynamic 
processes, interdependent regulatory controls, and the operation of 
multiple interacting components [3]. 

The fundamental challenge in a “wholistic” understanding of 
biological processes is the complexity involved in the interaction of 
different components, coupled with the knowledge gap which exists 
in a complete characterization of their molecular mechanics. The 
complexity and knowledge gap increases manifold as we move into 
higher scales such as interaction of large ensemble of cells in a tissue, 
or interaction of tissues in continuum for rhythmic pumping of the 

heart [4]. The challenge [3] is to develop a modeling technique that can 
easily integrate the molecular and genetic data together with available 
pathway and system knowledge, for a quantitative understanding of 
physiology and behavior of biological processes at multiple scales: 
starting from the cell, to the tissue, and finally to the level of whole 
organisms. 

In recent years, researchers from diverse backgrounds of physical 
sciences, mathematics, biological and computational sciences have 
collaborated on developing models which capture the dynamics of 
biological processes. Continuous system models [5-9], which employ 
differential equations to simulate cellular dynamics, have been 
extensively used in tools like Dizzy [9] and JARNAC [6]. Stochastic 
discrete time models, like StochSim [10] and M-cell [11], have been 
developed for capturing the stochastic nature of molecular interactions 
within the existing framework of rate equations in continuous time 
domain. Most of these models focus on intracellular biochemical 
reactions and require accurate estimation of a very large number of 
system parameters for providing systemic understanding of underlying 
processes. More integrative tools at the whole cell level have also been 
developed, which try to model cellular mechanisms and present visual 
representation of their functionality [12-14]. Appreciating the need 
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for quantitative techniques to understand the systemic behavior of 
complex cellular processes, a rich body of literature, particularly in 
the modeling and simulation (M&S) landscape has been developed for 
systems biology in the past few years. We provide a taxonomic study of 
the existing techniques in Section 2. 

With the existing systems in perspective, we present a discrete-
event based stochastic simulation system to study the process dynamics 
in cells. The central theme of our approach revolves around abstracting 
a complex biological process as a collection of interacting functions 
driven in time by a set of discrete molecular events. Analyzing the 
system at a molecular level, the temporal dynamics of the system are 
revealed by the interaction of these events. The stochastic behavior 
of the interactions is captured through the mathematical formalism 
characterizing the time associated with each of the biological events, 
i.e. the event holding time models. The discrete event models create the 
biological process description in time, while the simulation captures the 
interaction of these processes through the events to create the dynamics 
of the biological system. We outline the details of our modeling approach 
in Section 3. In order to evaluate the success of our technique, we study 
a test bed biological process, namely the effect of the two component 
PhoPQ virulence gene regulatory network in Salmonella Typhimurium 
pathogenesis. Using this test bed, we develop our simulation systems 
and methods in Section 4. We present the software architecture of 
our platform, iSimBioSys, in Section 5. In Section 6, we report results 
on the dynamics of the PhoPQ pathway under the influence of extra 
cellular magnesium, in silico and corroborate the results with wet-lab 
experimental outputs. Our results show that stochastic modeling of 
molecular events, linked through a discrete event based simulation 
platform, is capable of effectively modeling cell-level molecular pathway 
dynamics while allowing various “dry lab” hypothesis testing prior to 
developing novel wet-lab experiments. Although, currently focused on 
modeling cell-level pathways, our discrete event based biosimulation 
tool can be extended for multi-scale simulation of complex processes, 
which is outlined in the conclusions in Section 7. 

2. Modeling and S imulation Landscape
The inherent complexity involved in the molecular processes 

governing life has motivated the development of computational 
modeling and simulation techniques to decipher their ensemble 
dynamics. Particularly, in the post-genomic era, biology has undergone 
a paradigm shift from being an “observational science” to a quantitative 
discipline, powered by large scale databases, computational power and 
advanced, high throughput experiments. In this section, we provide an 
overview of the wide spectrum of in silico modeling and simulation 
methodologies available for system-wide study of biological processes. 

Mathematical models have being extensively used for intracellular 
molecular networks like kinase cascades and metabolic pathways, gene 
regulatory networks and protein interaction networks [15]. A large 
section of the work in computational models of biological systems is 
based on classical chemical kinetic (CCK) formalism based on a set 
of ordinary differential equations (ODE), also known as reaction rate 
equations or mass action kinetics [16]. Representing a homogeneous 
biological system as a set of biochemical reactions, the temporal 
dynamics of the molecular species is studied in the continuous-
deterministic domain. A large number of computational tools, which 
provide a software platform for building, storing and parameterizing 
a set of biochemical reactions and solving those using numerical 
techniques, are available, like Gepasi [5], Jarnac [6], CyberCell [11], 
Promot/DIVA [17], Stode [18]. These rate-based models have been 
successfully applied to study gene expression and other molecular 
reaction systems [15]. 

While continuous-deterministic reaction models are capable of 
capturing behavorial dynamics for spatially homogeneous systems with 
large number of molecular species, the inherent stochasticity observed 
in many biological processes (gene expression and protein synthesis) 
have proven the limitation of CCK in accurately representing biological 
processes. In a recent article [16], Arkin et.al have shown the limitations 
of CCK in several common biological scenarios, where stochastic 
reaction dynamics present a more accurate picture of the systems 
behavior. Stochastic models, which present an accurate approximation 
for the chemical master equation (CME), have been developed, largely 
based on Gillespie’s algorithm [19,20]. In this method, as shown in a 
later section, the next reaction event and the time associated with it 
are computed based on a probability distribution (Monte Carlo Step). 
Stochastic tools, like StochSim [10], have been developed based on 
Gillespie’s technique and its computationally efficient variants like 
Gibson-Bruck [21] and tau-leaping [22,23,24]. A large number of 
tools, which provide an integrative environment to build and study 
biochemical reaction systems in an exchangeable format (like Systems 
Biology Markup Language (SBML)) using deterministic as well as 
stochastic techniques are available, like E-Cell (Table 1), Virtual Cell 
[25], Dizzy [9], CyberCell, and M-Cell (Table 1). These techniques 
are based on treating a biological process as a system of equations, 
represented by their rate constants and other parameters (like volume, 
cell density etc.) and simulating their interactions through numerical 
techniques or Monte Carlo based stochastic simulations. 

Another technique in building abstract computational models 
for biosimulation has been developed based on Petri nets [26,27,28] 
and stochastic process algebra [29,30,31]. These methods present a 
mathematical formalism for representing biochemical pathways within 
and between cells. In [27], the authors present a stochastic Petri net 
(SPN) model for studying simple chemical reactions (SPN model of 
ColE1 plasmid replication) and show how existing softwares can be used 
to perform structural analysis based on numerical techniques. Discrete 
event system specifications based on Devs & StateCharts [32,33] and 
Stochastic Π calculus [31] have been successfully demonstrated to 
provide a computational platform for temporal simulation of complex 
biological systems. Hillston et. al have developed a mathematical 
technique, Performance Evaluation Process Algebra (PEPA) [29,34], 
wherein functionality is captured at the level of pathways rather than 
molecules and the system is represented as a continuous time Markov 
chain. 

Other simulation methodologies, based on object oriented and 
agent based (ABM) paradigms have also been studied for in silico 
modeling of complex bio-processes by Uhramacher et.al [35-37]. In 
[38], the authors have developed AgentCell, an ABM based digital 
assay for the study of bacterial chemotaxis. Another modeling 
technique, Functional Unit Representation Model (FURM) [39,40] has 
been proposed for large scale modeling of in vitro drug metabolism. 
Simulation platforms, based on discrete events, where the events are 
modeled on rate constants and measured experimental data, have been 
demonstrated in [12] and [41]. 

The overarching theme, guiding the development of in silico 
modeling and simulation tools, is developing models based on 
continuous-deterministic ODEs or using stochastic simulation 
algorithms (SSA) for approximating the chemical master equation, 
which capture the temporal evolution of the biological process 
dynamics. Most of these techniques focus on molecular pathways, 
which are represented in graphical and mathematical formalisms, 
treat spatial dynamics in terms of well-defined cellular compartments, 
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and abstract the complexity in terms of estimated parameters and 
rate constants. Table 1 presents a brief taxonomy of the modeling 
techniques in terms of these key characteristics. 

In the next section, we outline our modeling and simulation 
technique, based on a discrete event system specification, where 
the molecular events (representing reactions, ionic diffusions) are 
mechanistically modeled depending on their biophysical characteristics 
to compute the probability distribution of their execution times. A 
discrete event simulation system then links the biological processes to 
simulate the behavior emerging from the interaction of the events in 
time. 

3. Modeling and Simulation Approach
A fundamental challenge in computational systems biology [3] is 

the simplification of the biological system complexity without losing 
the ensemble dynamic behavior. In the system engineering view of 
complex processes [42], the key notion is to abstract the complexity 
of the system as a set of discrete time and space variables (random 
variables), which capture the behavior of the system in time. The 
entire system is a collection of functional blocks or modules, which 
are driven by a set of “events”, where an “event” defines a large 
number of micro level state transitions between a set of state variables 
accomplished within the event execution time. The underlying 
assumption driving this abstraction is the segregation of the complete 
state space into such disjoint sets of independent events which can 
be executed simultaneously without any interaction. The application 
of this technique in large complex communication networks has 
demonstrated the accuracy of the approach for the first and higher 
order dynamics of the system within the limits of input data and 
state partitioning algorithms [43]. For example, discrete event based 
system modeling has been effectively applied for designing routers, the 
key components responsible for routing traffic through the Internet. 
Discrete event based simulation techniques have also been used in a 
wide variety of manufacturing processes and studying the system 
dynamics of complex industrial processes. 

Motivated by the success of discrete event driven stochastic 
simulation techniques in large scale complex networks, our approach 
is based on identifying and modeling key biological functions at a cell, 
tissue or organ level and mapping those to a set of discrete molecular 
events associated with the modular processes. Each event represents a 
molecular interaction (chemical reaction, ionic diffusion etc.) and is 
associated with two characteristics: 

(i) The parametric stochastic model of the underlying physico-
chemical process associated with the event. The model, 
elucidated further in the next section, characterizes the holding 
time distribution associated with the event 

(ii) The molecular resources associated with the event (e.g the 
molecular species involved in a reaction event) and their 
utilization algorithm based on reaction stoichiometry. 

Thus, to define the discrete events, we first identify a biological 
process as a system of resources (which can typically be the various 
molecules, ions, ribosome, chromosome, operons, tissue, organ etc 
involved in the system) that are periodically changing their state 
between “busy” (e.g., a molecule is busy in a reaction) “free”(e.g., a 
molecule is free to enter a new reaction) “created” (e.g., a molecule 
is created by a reaction) and “killed” (e.g., a molecule is taken up by 
a reaction) based on the underlying resource usage algorithms. The 
events are marked by the instants the selected resources change their 

state in the system. The state transitions from one state to another 
are governed by transition flow rates of the functions involved in 
the process. The estimation of the transition flow rates is derived by 
mathematical model or by experimental observation of the physical 
processes involved in the functions. As an example, we consider the 
fundamental function of phosphorylation, which involves the transfer 
of a phosphate ion from an Adenosine triphosphate (ATP) molecule 
to another molecule/ion resulting in the phosphorylated molecule/
ion and a molecule of Adenosine diphosphate (ADP). In particular, 
we consider the phosphorylation of a PhoP molecule (which as we will 
see later is an intra membrane protein signaling molecule involved in 
the regulation of the PhoPQ pathway in Salmonella) to phosphorylated 
PhoP or PhoPp. In order to capture the dynamics of this basic biological 
function, we need to account for the state of the resources involved 
(in this case ATP, count of PhoP molecule and phosphorylated PhoP 
molecule, and ADP). Further, the time required to perform this 
function, which is termed as the “holding time”, is estimated on models 
based on fundamental physical processes like molecular kinetics, 
diffusion physics and molecule binding mechanism that will be in place 
at that particular system state. Thus, this holding time will be randomly 
changing as the system states change and will accurately reflect the 
actual working of the cellular system. At the end of the “holding time”, 
the phosphorylation molecule can trigger an “event” to drive another 
functional process. As the simulation proceeds at a molecular level, the 
resource states are determined in terms of the “molecular count” of the 
individual resources. For example, after the successful completion of 
the PhoP-phosphorylation function, the count of ATP in the system 
is decreased by one while that of ADP is increased by one. The PhoP 
molecule is “killed” and phosphorylated PhoP molecule is “created.” 
In this way, basic biological molecules and their events are identified, 
modeled and linked together in a discrete event simulation framework 
to capture the dy-namic interactions of a cellular process in time. 

As is evident from the above discussion, one of the key challenges 
of this discrete event modeling of biological processes is the 
identification of basic functional modules [3], the resources involved 
in them and the key events driving the interaction between the different 
modules. The wide variability and complexity of modules, resources 
and possible set of events in natural sciences further complicate the 
problem. However, there exists a core set of basic functional modules 
which play fundamental roles in a wide variety of biological processes. 
Identification and modeling of these functions can greatly facilitate the 
study of complex processes of life. Some of the basic bio-molecular 
events, which are associated with key biological functions, include: 

(1) Reaction Time, 

(2) Diffusion Time, 

(3) DNA Protein binding time 

(4) Transcription Time 

(5) Translation Time 

(6) Transport Time 

(7) Protein Life Time 

(8) Protein Folding Time 

The development of stochastic event models is closely linked to the 
success of the simulation and forms a central part of our modeling and 
simulation approach, the basic steps of which are outlined in Table 2. A 
large volume of work in stochastic in silico analysis of biological systems 
is centered on Stochastic Simulation Algorithms (SSA) using Gillespie’s 
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technique [19,20] and its variants [21]. While the fundamental notion 
of approximating the Chemical Master Equation (CME) forms the 
driving principle in any stochastic modeling framework, the event 
modeling and execution phase (Step 2 in Table 2) and the resource 
update phase (Step. 3) differentiates the two techniques. While Gillespie 
and other SSA algorithms employ a Monte Carlo step to determine the 
next reaction event and the time-step update, individual event holding 
time probability distributions govern event time (i.e. reaction time) in 
our approach and the time-step updated according to the particular 
random number instantiating the distribution. Such an approach 
allows modeling different blocks at different levels of granularity 
depending on available knowledge, allowing one to study the different 
functional modules of a biological process. 

3.1 Tracing temporal dynamics 

In the stochastic event-based modeling and simulation approach, 
the complexity of the system is captured in the “time” domain. The 
dynamics of resource utilizations with progression in time unveil the 
complete internal picture of a complex biological process, capturing 
the evolution of the system in time. In discrete event simulation, 
“simulation time” is the representation of the “physical time” of 
the system being modeled. Each event computation is associated a 
timestamp indicating when that event occurs in the physical system 
being simulated. As mentioned in the previous section, the event 

time computation includes the physical function execution time of 
the system at the current context of the system. This execution time 
is often called “holding time” of the event function and is generally a 
random number. The exercise of characterizing the system parameters 
is performed as follows: 

1. Identify the list of discrete events that can be included in the 
model based on the available knowledge of the system. 

2. Identify the resources of interest for the experiment which are 
being used by the biological process for each discrete event. In 
other words, we need to identify the various types of molecules, 
cells, tissues etc which are involved in the resource usage 
algorithm for an event (either in reactions, or as catalysts or 
end products)

3. Compute the time taken to complete this biological discrete 
event, i.e. the holding time of the discrete event. For this 
purpose, it is important to identify the parameters which 
affect the interaction of the resources in a particular biological 
discrete event process and mapping them into time domain. 
Unlike in rate based simulation models, where it is assumed that 
the system state remains the same during the complete reaction 
of multiple molecules, the time required for completion of a 
biological discrete event processing is computed as a function 
of these parameters. 

M&S tool Modeling Technique Spatial 
Representation Temporal Evolution Reaction Model Comments & Availability

Promot/DIVA 00 paradigm  Not explicity 
defined Continuous time CCK

http://megdeburg.mpg.de/de/
research/projects/1002/comp_
bio/promot 

JARNAC ODE based Not explicity 
defined Continuous time CCK http://www.sys-bio.org

V-Cell Continuous domain Compartments, 
sub volumes Continuous time CCK, Mass action http://www.vcell.org

M-Cell Monte Carlo simulator of cellular micro physiology Off lattice Time-step driven At surfaces, CME http://www.mcell.pse.edu

E-Cell Object-oriented software suite for modeling, 
simulation, and analysis of complex systems Compartmental Supports CCK/SSA CCK, CME http://www.e-cell.org

SimBiology Primarily ODE based simulation package Not explicity 
defined Supports CCK/SSA CCK, CME The Math Works Inc.

Dizzy Stochastic simulation package Compartmental Supports CCK/SSA CCK, CME ISB, Sealtle, WA

Cellerator Mathematical package for automatic equation 
generation and simulation for network of cells

Not explicity 
defined Continuous time CCK http://www.cellerator.info

Agent Cell Agent based simulation of biological systems Not explicity 
defined Time-step driven Agents model 

molecular behavior http://www.agentcell.org

FURM Functional unit representation of biological 
processes

Not explicity 
defined Continuous time Functional modeling http://biosystems.ucesf.edu/

Research/furm/index.html

Stochastic II 
calculus Abstract model of system based on DEVs Cellular 

compartments
Continuous/discrete 
time steps

Processes model 
molecules/domain, 
communications 
model reactions

[30,31]

Stochastic 
Petrinets Stochastic model of molecular interactive networks Compartments Continuous/discrete 

time steps Graphical model [26-28]

Statecharts & 
DEVS Discrete event system specification

Distinction 
between system 
and environment

Continuous/discrete 
time steps

Atomic models and 
coupled models [32,33]

Smoldyn Atomistic modeling of biological processes with 
dynamic membrane geometry Off lattice Inter-particle 

collisions MD based http://genomics.lbl.gov/Sandrews/
software.html

CyberCell Atomistic modeling of biological processes with 
dynamic membrane geometry Off lattice Inter-particle 

collisions MD based http://projectcybercell.ca

MesoRD Stochastic domain Compartments, 
sub volumes Event-driven CME http://mesord.sourgeforge.net

Our Simulator Stochastic modeling of discrete events Compartmental Event driven discrete 
time steps

Based on CME, 
explicit models

Event-time distributions drive the 
simulation

Table 1: Taxonomy of modeling and simulation software for biological systems.
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Stochastic Simulation (Gillespie 
Algorithm)

Stochastic modeling based Discrete 
event simulation (iSimBioSys)

Coments

1 Initialization: Initialize the number of 
molecules in the system, reactions 
constants, and random number 
generators

Initialization: Initialize the number 
of molecules in the system for each 
species, model parameters and 
resources and random number 
generators

The initialization steps are similar in both 
the algorithms

2 Monte Carlo Step: Generate random 
numbers to determine the next reaction 
to occur as well as the time interval.

Event modeling and execution: The next 
reaction or molecular event is selected 
based on the functional logic hardwired 
in the simulator. 
For each process and its associated 
event, a random number is generated 
for the event execution time based on 
the first and second moment of the event 
holding time distribution computed by 
the stochastic model.

In this step, Gillespie and other 
stochastic simulation algorithms employ 
a Monte Carlo step to determine next 
reaction event and time while in our 
approach, the next event selection and 
random execution time generation are 
computed differently.

3 Update: Increase the time step by the 
randomly generated time in step 1. 
Update the molecule count based on the 
reaction that occurred.

Update: The global simulation clock is 
increased by the time-step computed in 
the previous step as the event holding 
time, The resource count of molecules 
are updated based on the last event 
stochiometry

The temporal progression takes place in 
discrete time-steps based on the random 
event holding times computed in the 
previous step in our approach.

4 Iterate: Go back to Step 1 unless the 
number of reactants is zero or the 
simulation time has been exceeded.

Iterate: Go back to Step 1 and repeat 
the process. In case a particular event 
cannot be executed because of resource 
conflicts, it is ignored and simulation 
proceeds without the update step

The handling of reactions/events with 
resource conflicts/shortage is different in 
our approach

Table 2: Comparison of SSA and iSimBioSys modeling framework.

Identify the next set of biological discrete events initiated on the 
completion of an event. If multiple dis-crete events are generated, it 
is necessary to find out the probability of the individual next event. 
This modeling of the probability depends on the biological intelligence 
captured through micro array or other experimental data that are 
reported in pathway and other research databases. Thus extraction of 
the system intelligence from the experimental data from PubMed [2] 
publications to generate the pathway logic is an important component 
of this modeling technique. 

The resource utilization algorithms which determine the holding 
time of the functional blocks, together with the resources involved and 
their count in the system, all play a key role in the dynamic behavior 
of the biological process being simulated. Once the components are 
defined and linked in the simulation framework, the dynamics unfold 
by the interaction of different events in time, as depicted in a timeline 
snapshot in Figure 1. 

In summary, our modeling and simulation technique presents 
a stochastic, event-driven, discrete time-step framework which 
approximates the stochastic dynamics of the chemical master equation 
by parametric models of bio-molecular event time distributions. In 
the next section, we present the simulation methodology, building 
its different components based on a case study of the virulence gene 
regulatory pathway in Salmonella. 

4. Systems and Methods 
In this section, we present a systematic outline of the methodology 

of developing the discrete event simulation, presenting the core 
components involved in building an in silico model of a biological 
process. The components are built around the case study system, the 
regulation of virulence gene in Salmonella, specifically the effect of 
external magnesium concentration on the two component PhoPQ 
virulence gene regulatory pathway. Building on the case study system, 
we outline the modeling methodology, mathematical abstraction 
and the discrete event simulation implementation of the abstraction. 

We start with a brief description of the signal transduction and gene 
regulation process for this particular two-component system based on 
available biological literature [44]. 

4.1 Virulence gene regulation in salmonella typhimurium 

Bacterial pathogenesis in Salmonella Typhimurium involves 
the complex interaction of regulatory pathways which play different 
roles in various stages of infection [44]. As mentioned earlier, we 
focus on the two component phoPQ regulatory system and its role in 
accomplishing parasitism of the host, [44] elucidates the role of extra 
cellular Magnesium (Mg+2) concentration as a primary signal of this 
pathway which acts as a global regulator of Salmonella virulence and 
helps in the survival and replication of the bacteria in the macrophages, 
shown in Figure 2 Low extra cellular Mg+2 (microMolar concentrations) 
was shown to cause an increase in the expression of certain phoPQ 
activated genes, while high Mg+2 concentrations (milliMolar) caused 
an immediate “switch off” of these genes. Detailed in vivo and in vitro 
results for virulence gene regulation in Salmonella are also available 
[44]. The knowledge available from the biological studies, together 
with the qualitative diagram of the system in Figure 2 represents the 
biological process under study. 

4.2 Modeling methodology 

Once the biological knowledge has been defined, the modeling 
methodology involves 6 components which translate the qualitative 
knowledge into a quantitative formalism which lends itself amenable 
to computational study, which is represented in Figure 3. 

4.2.1 Knowledge extraction and pathway construction: The 
extraction of current biological knowledge of a given process, with 
subsequent construction of molecular pathways is the first step in the 
methodology. We used comprehensive knowledge extraction from 
PubMed [2] database, to construct the gene regulatory pathways for the 
phoPQ network, identifying the common intersection of the pathways 
i.e. the genes and gene products which are regulated by this system 



Citation: Ghosh S, Ghosh P, Basu K, Das SK, Daefler S (2011) A Discrete Event Based Stochastic Simulation Platform for ‘In silico’ Study of 
Molecular-level Cellular Dynamics. J Biotechnol Biomaterial S6:001. doi:10.4172/2155-952X.S6-001

Page 6 of 19

ISSN:2155-952X JBTBM an open access journalEnvironmental biotechnology under a changing climateJ Biotechnol Biomaterial 

Figure 1: Event progression along the simulation timeline.

Figure 2: PhoPQ activated virulence gene regulation in Salmonella 

at various stages. In our current work, the two component pathway 
involves transcriptional regulation of 44 genes, 5 of which are involved 
in another cascading two component system (pmrBA). A positive 
feedback loop exists in this pathway, in the form of up regulation of 
phoPQ gene by the system. Figure 4 shows the complete pathway, with 
the positive feedback loop marked in deep color. The pathways have 
been constructed using Cell Designer 3.0 which presents a structured 
(Extensible Markup Language (XML)) format for the data that can 

be easily rendered into the discrete event simulation framework. The 
process involved 112 experimental reports of this system that were 
manually curated from PubMed [2], development of the pathway 
graphs for each experiment and then concatenating those graphs to get 
the complete pathway graph. The manual pathway curation involved as 
a starting point the 10 genes (as shown in Table 5) identified in [55] as 
phoP associated in the host cell by comparing the expression of human 
monocytic tissue culture cells infected with wild type and phoP:Tn10 
mutant strain. 
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Figure 3: Core components of simulation methodology.

The gene regulatory pathway facilitates the first stage of our 
system modeling approach and is responsible for driving the complex 
dynamics of the biological process of PhoPQ system. It leads to the 
identification of the various “resources” involved in the system, whose 
ensemble dynamics in time drive the system output. Figure 4 marks the 
first step in the transition of the qualitative knowledge of the biological 
system (as captured in Figure 2) into a computational format captured 
in the pathway network structure. 

4.2.2 Functional module identification of biological processes: 
The next step in model building is the abstraction of the biological 
phenomena which are involved in the system under study. In our 
case, it translates into the basic processes which are involved in the 
activation of the PhoPQ system under external magnesium, follows by 
expression (up regulation) or repression (down regulation) of genes in 
the pathway. Based on a large body of work available in literature, the 
main functional modules have been described in Figure 5 The biological 
process modules identified here are at different levels of granularity. 
For example, the autokinase activity [44] of PhoQ receptor molecules 
involves phosphorylation of a single PhoQ molecule. However, gene 
expression is a complex process, involving a large number of complex 
sub processes, all of which are not fully understood currently. Thus, 
the functional modules need to incorporate these varying levels of 
granularity in their event models, which we illustrate next. 

Figure 5 marks the final step in the transition of the biological 

knowledge into the computational modeling and simulation 
frameworks, encompassing curated database (Figure 4) together with 
system model characteristics. 

4.2.3 Stochastic Event Modeling: The mathematical formalism 
underpinning the simulation of the biological processes is the stochastic 
modeling of the molecular events associated with the processes. As 
mentioned earlier, the modeling of the event holding time of the 
functional modules (the arrows between the modules in Figure 5 denote 
the events), is a key distinguishing step in our methodology. In the 
discrete event simulation execution, for each process and its associated 
events, a random number is generated for the event execution time or 
holding time. This time step drives the dynamics of the simulation and 
the change in state of system resources. In our approach, the random 
holding time is generated as an instance of the probability distribution 
associated with the particular even-t. This parametric distribution, 
defined in terms of its first and second moments, is computed from the 
stochastic modeling of the biophysical and biochemical properties of 
the process (elliptical modules in Figure 5) and forms the heart of the 
stochastic event modeling step. 

As mentioned in the previous section, several key events which 
together define a functional bioprocess require to be modeled as part 
of the modeling and simulation procedure. However, the simulation 
framework is capable of incorporating models in varying degrees of 
granularity and abstraction, based on available knowledge, empirical 
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Figure 4: PhoPQ gene regulatory pathway.

Figure 5: Functional modules of the PhoPQ regulatory network.

and experimental data or on the focus of a particular system. Below, 
we summarily present our stochastic model formalism for two key 
processes that were directly used in this paper together with a third 
model presented at significantly higher abstraction. More details on all 
the stochastic models that we have developed and validated earlier are 
available in [45-48,50,56-66]. 

A. Transfer of Magnesium Ions through the Cell Membrane: 
As the PhoPQ pathway is controlled by extra-cellular magnesium ion 
concentration, the movement of Mg2+ through the cell membrane 
needs to be modeled (first two modules in Figure 5). This process 
is modeled as diffusion of charged ions through the cell membrane. 

Specifically, the event time for a molecule of Mg2+ entering or leaving 
the membrane needs to be computed. This deals with the inter-
arrival (departure) time between two molecules or ions, where their 
movement to/from a cell is controlled by concentration gradient and 
ion charge potential gradient across the membrane. The inter-arrival 
(departure) time is controlled by the ion flux in this case. This requires 
a transient solution whereas existing cell biology models offer only 
steady state solutions [18,49]. To derive the inter-arrival (departure 
time between the ith and (i+1)th molecules i.e. ti+1 – ti , we determine tN-i-1 
and tN-i that denote respectively the times to transfer and molecules/
ions through the channel, where N is total number of molecules/ions. 
Now, can be obtained by solving the following equation [45,46,48]:
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The parameterized equations in (1) and (2) capture the different 
physico-chemical factors affecting the diffusion of charged ions. Based 
on the parameter values for diffusion of Mg. ions through the bacterial 
cell membrane, Figure 6 shows the inter-arrival time for different 
concentrations of Mg. ions in the extracellular environment.

B. Phosphorylation and other molecular reactions: The process 
of phosphorylation is considered as a reaction system. Applying 
collision based reaction rate model coupled with the molecular 
velocity distributions and free energy parameters of the reaction, two 
discrete stochastic time models for cytoplasm reactions are derived 
in [47,50,56,65]. The first model addresses the cytoplasm reaction of 
a single molecule with a second type of molecular concentration. The 
average reaction time is Tavg = τ/p and its second moment is T2ndmoment 
= (2-p) τ2 /p, where p is the reaction probability of the first molecule 
in the solution during an infinitely small time τ. The above model 
can be extended to the reaction of a batch of n1 molecules of type X1 
with n2 molecules of type X2. At each time step τ of the reaction, fewer 
molecules of the second type will be free as some of them are already 
used in the previous time steps. The average and second moment of 
batch reaction completion time are given by
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where 1
ip  is the probability of one molecule of type X1 having 

collision with a molecule of type X2 in the ith time step. Based on the 
first and second moments computed in Eqn. (3) and (4), it is possible 
to determine the probability distribution for bi-molecular reactions 
as shown in Figure 7 where rate-based continuous reaction-time 
estimates are also compared as having a step probability function 
of 0 or 1 depending on the reaction time (i.e. 1/reaction rate). These 
two illustrative cases capture the mathematical formalism of the 
stochastic models for the bioprocesses which are then utilized by the 
discrete event simulation for specific functional units associated with a 
particular system (phosphorylation and auto-kinase reactions and Mg. 
ion diffusions in the PhoPQ pathway test-bed studied in this work).

C. Gene expression modules: As a final illustrative case, we focus 
on the complex module of gene expression and protein synthesis 
which orchestrate the expression dynamics of the different genes 
involved in a particular gene regulatory pathway. The stochastic nature 
of gene expression and the multitude of factors both at transcription 
(RNA polymerase copy number), translation (competition between 
ribosome and RNaseE molecule for translation initiation or decay 
respectively) as well as posttranslational stages pose modeling 
challenges in this complex molecular assembly phage, particularly in 
the light of knowledge gaps in the biological understanding of various 
parts of the process. As our framework is capable of encapsulating 
such knowledge gaps through high-level abstractions, in our current 
work, the holding time in these blocks have been essentially based on 
existing experimental data, collected for average bacterial transcription 
time and translation times (Table 3). The complex process of protein 
formation and decay have been modeled as an exponential distribution 
with the exponent computed as a function of the number of proteins in 
the system and its half life values, which depends on the conformation 
and residue length of a particular protein obtained from the PubMed 
and EcoCyc databases [51]. While such modules at varying degree of 
model granularity can co-exist in our framework, proper estimation of 
parameters (from in vivo and in vitro data) can increase the efficacy of 
the model. Once the bioprocess events are modeled, the discrete event 
simulation can link these events and their execution times to unfold the 
temporal dynamics of the system. 

Figure 6: Inter-arrival time for Mg. ion diffusion mechanism.
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Figure 7: Probability distribution of molecular reaction time.

4.2.4 Discrete event simulation: This is the heart of the framework, 
comprising of the core simulation engine responsible for driving 
the system in silico. Based on the functional modules elucidated in 
Section 4.2.2, the key events driving the interaction of these modules 
are identified, as shown in Figure 5. The event times associated with 
each of these biological events are developed based on the stochastic 
modeling techniques outlined in Section 4.2.3. The discrete event 
platform incorporates this information in its framework, the details of 
which are outlined in Section 5. 

4.2.5 In silico result and wet lab verification: The success of the 
simulation methodology depends on the validation of results with 
wet lab experiments. This provides a tool for in silico verification 
of biological processes and for subsequent hypothesis testing of 
biological functions prior to more advance and costly in vitro and in 
vivo experiments. In Section 6, we study the validation of our test bed 
system against experiments performed in [44]. 

The six components elucidated in this section, powered by large 
databases of molecular knowledge, iteratively interact to form an in 
silico modeling and simulation platform. 

Biological Parameter (Bacteria) Value
1 Length of genome 4857432
2 Number of genes 4451
3 Rate of transcription 50 nucleotides/sec
4 Rate of Translation 18 residues/sec
5 Area of cell 6*10-12 sq.m
6 Volume of Cell 1*10-15 L
7 Diffusion co-efficient of magnesium ion 1*10-9

8 Diffusion co-efficient of a protein molecule 7.7*10-6

9 Avg. mass of a protein molecule 25kDa
10 Avg. diameter of a avg. protein molecule 5 nm
11 Millimolar conc. of Mg 1.0*10-3

12 Micromolar conc. of Mg 8.0*10-6

13 Phosphorylation Reaction Time
5.6*10-9/ (No. Of 

reactant molecules) 
secs

14 Avg. delay between diffusion of two mg molecules 8.5*10-10 secs

Table 3: System model and simulation parameters.

5. iSimBioSys Software Architecture 
In this section, we develop the software implementation of 

our discrete event simulation platform, iSimBioSys, based on the 
methodology explained in the previous section. The modular nature of 
the functional blocks involved in a system engineering approach lends 
itself to an object-oriented computing paradigm [35,36]. Specifically, 
the Java based [52] implementation encapsulates the stochastic models 
for the different molecular events and links them together in the 
discrete event simulator. 

Each functional module is represented as an object, having its 
own state (the resources involved in the module) and its associated 
behavior, which is modeled on the functionality of the module. 
Another characteristic of a module are its associated input events, 
which drive the functionality of that module and its corresponding 
output events which are inputs to other modules. The central theme 
of a discrete event simulator revolves around the event queue, which is 
the global data structure responsible for storing time-stamped events 
for the simulation. The event queue maintains an event list containing 
the events to be executed. Instead of having each event store its 
corresponding execution time as done in [12], each event is associated 
with the corresponding model object (an instance of a model class) 
which stores the first and second moment of the probability distribution 
associated with the event, e.g. the diffusion event is associated with the 
mean and variance of the probability distribution as computed in the 
model formalism outlined in the previous section. A central scheduler 
is in control of the queue, popping events in a time-ordered manner to 
avoid “causal errors” [12] and sending it to the corresponding modules. 
At each event triggered, an instance of a random variable following 
the corresponding probability distribution is computed to calculate the 
event execution time for the particular molecular event. Based on the 
event execution logic, new events are created and pushed into the event 
list, updating the global simulation clock in the process. The scheduler 
is also responsible for maintaining the event list as events are generated 
by a module following its biological process logic. As is evident from 
the discussion, the scheduler together with the event queue drive the 
simulation environment while the module objects and their behaviors 
define the event handlers of the framework. 

Our current framework supports a multi-threaded architecture 
with the main simulation engine running in one thread while the 
visualization plane running on another. The basic architecture and 
framework of the simulation involves four logical packages as follows: 

•	 In Silico experimental setup: These set of classes are responsible 
for setting up the modeling and system parameters used in the 
particular simulation block and are generally provided through 
user interface or plain text files. While certain parameters 
are based on available biological literature such as cell 
volume, macro-molecule diameters etc., event execution time 
parameters are computed by the engine internally based on the 
logic defined in the corresponding model class for each event. 

•	 Discrete event process modules: These set of classes, derived 
from a common base class, essentially the resource utilization 
algorithms for the biological process being simulated and 
provide methods to compute event holding times. It may be 
noted here that the discrete event process modules are a one-
to-one mapped implementation of the functional modules 
identified in Figure 5 These event modules act on the system 
resources constructed in the knowledge extraction phase. In 
our current implementation, the resources are modeled in a 
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Package Name Number of Calls Cumulative Time Method Time
SimulationEngine MainEngine.writeFile(String, double, double) 8,064 159,967 (33.6%) 517 (0.1%) 
SimulationEngine MainEngine.startSimulation() 1 290,664 (61.1%) 82 (0.0%) 
SimulationEngine MainEngine.reportResults() 1,344 276,565 (58.1%) 69 (0.0%) 
SimulationEngine MainEngine$1.compare(Object, Object) 31,611 49 (0.0%) 25 (0.0%) 
SimulationEngine MainEngine$1.compare(Event, Event) 31,611 24 (0.0%) 24 (0.0%) 
SimulationEngine MainEngine.getResourceValue(String) 8,064 78 (0.0%) 23 (0.0%) 
SimulationEngine MainEngine.<init>(SimulationVisualization) 1 14 (0.0%) 14 (0.0%) 
SimulationEngine MainEngine.initializeModules() 1 14 (0.0%) 14 (0.0%) 
SimulationEngine MainEngine.generateTriggerEvent(double) 1,790 179 (0.0%) 7 (0.0%) 
SimulationEngine MainEngine.initializeEngine() 1 71 (0.0%) 7 (0.0%) 
SimulationEngine MainEngine.initializeEventQueue() 1 7 (0.0%) 7 (0.0%) 
SimulationEngine MainEngine.generatePlots() 1 11,566 (2.4%) 3 (0.0%) 
SimulationEngine Event.<init>() 1,790 3 (0.0%) 2 (0.0%) 
SimulationEngine MainEngine.run() 1 290,666 (61.1%) 0 (0.0%) 
SimulationEngine Event.getScheduledTime() 65,012 0 (0.0%) 0 (0.0%) 

Table 4: Call graph usage statistics of iSimBioSys under the 60mins experimental setup: The highlighted regions show the key resource consuming methods of 
the simulation. The startSimulation() method is invoked at the start of the simulation and takes 61% of the CPU time, the main function within it being the invocation of 
the run() method of its thread. Another method which is invoked the highest number of times is the getScheduledTime() on an event object, since it reflects the call of the 
event scheduler. As the queue is implemented using the templatized priority queue of JDK 1.5, the holding time on the method is almost negligible.

Gene name as in the PhoPQ Network Alias Name Description Reference (Locus link ID) 
CD9 BA2, MIC3, P24 CD9 antigen (p24) 928 

CTSD CPSD, MGC2311, Cathepsin-D pre 
-proprotien 

Cathepsin-D (lysosomal aspartyl 
protease) 1509 

LILRB2 ILT4, LIR2, MIR-10 
Leukocyte immunoglobulin-like receptor, 
subfamily B (with TM and ITIM domains), 
member 2 

10288 

ELF1 E74-like factor 1, Elf-1, ETS-related 
transcription factor Elf-1 

E74-like factor 1 (ets domain 
transcription factor) 1997 

CISH SSI-3, CIS, CIS-1 Cytokine inducible SH2-containing 
protein 1154 

TNF DIF, TNFA, TNFSF2 Tumor necrosis factor (TNF superfamily, 
member 2) 7124 

PIM1 PIM, Oncogene PIM1, pim-1 oncogene pim-1 oncogene 5292 

MYB
C-myb, Myb proto-oncogene protein, 
transforming protein myb, splice form 
containing exon 9A 

v-myb myeloblastosis viral oncogene 
homolog (avian) 4602 

DHFR DHFR, dihydrofolate reductase Dihydrofolate reductase 1719 

CDKN1B KIP1, P27KIP1, CDKN4 Cyclin-dependent kinase inhibitor 1B 
(p27, Kip1) 1027 

Table 5: List of genes used to construct the PhoPQ regulatory network (Figure 4) that were identified as phoP associated in the host cell in [44,55].

two dimensional data structure consisting of the resource state 
and its regulation logic (up or down regulation) based on the 
constructed pathway. As the event modules run in time, the 
resource states change and capture the dynamics of the system. 
These set of classes form the heart of the modeling formalism 
as they realize the stochastic behavior associated with each 
molecular event in terms of its probability distribution. 

•	 Main simulation engine: This class is responsible for handling 
the main thread of the discrete event simulator and implements 
the global event queue used. This class is responsible for 
communicating with the global event queue through the 
scheduler, executing the event process logic, updating the global 
simulation clock and exchanging resource state information 
with the visualization unit which updates the system behavior 
in real-time. 

•	 Visualization and data generation: These set of classes are 
responsible for data generation of the simulation and tracing 
the simulation in terms of change in resource states in the 
temporal axis. 

5.1 User interface 

The user interface of the current implementation involved three 
parts: 

•	 User Interface for experiment setup: The user interface is 
presented before the start of the simulation for the user to 
set up system parameters, simulation runtime environments 
and visualization data. Figure 8(a) captures snapshot of this 
interface. 

•	 Runtime visualization of simulation: The simulation can be 
traced in run-time in the visualization plane which runs on a 
separate thread as discussed earlier. Depending on user inputs, 
it traces the change in resource concentration of the system 
and also system signal states. As the dynamics of the system 
are traced in time, it provides a window for viewing the system 
behavior while the simulation runs in the background. Figure 
8(b) captures the visualization frame. 

•	 Performance visualization: These screens trace the various 
performance metrics of the simulation platform as it is 
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executed. In the current implementation, it is trace of the 
memory and CPU usage of the system. Figure 9(a) and Figure 
9(b) show the CPU and memory usage system snapshots. 

It may be mentioned here that the current implementation of 
iSimBioSys is based on Java 1.5 SDK and runs on a windows XP service 
pack 2 (enterprise edition) based Dell XPS Dimension system (Intel 
Pentium 4 processor with HT technology running at 3.4 GHZ), 2GB 
DDR2 SDRAM at 533 MHz and 250MB ATI Radeon X850 XT PE 
video card. 

6. Modeling Validation and Performance Measurement 
The efficacy of an in silico modeling and simulation approach 

is governed by (a) validation of the model against existing wet-lab 
experimental results, (b) effective calibration and sensitivity analysis of 
the key parameters governing the biological model and (c) hypothesis 
testing of different conditions on the biological system which can give 
further insights for novel experiments in the future. 

In this section, we employ the discrete event based stochastic 
simulation framework to model the dynamics of molecular-level cell 
dynamics, specifically, the effect of the PhoPQ two-component signal 
transduction pathway on the expression of virulence genes involved 
in bacterial pathogenesis of the gram-negative bacteria Salmonella 
Typhimurium. While the simulation system can be used to model the 
temporal dynamics of different regulatory pathways in a bacterial cell, 
we focus on the particular system in this work as it provides, 

•	 Existing wet-lab experimental setup and results [44] which 
allow the validation of the in silico results 

•	 The system involves the interaction of signal transduction with 
subsequent expression of genes governed by the upstream 
signals 

•	 The gene regulation pathway as built based on existing 
literature on the two-component system provides various 
regulatory mechanisms including up and down regulation of 
genes, and positive feedback effects which can serve to test 
different hypothesis in silico.

•	 As the system involves complex biological functions like gene 
regulation and protein expression, whose exact molecular 
mechanisms are not always well known, it provides a platform 
to test the efficacy of granular model abstraction based on 
available knowledge, on the behavior at a systems level. 

Figure 8a: User input interface of iSimBioSys.

Figure 8b: Visualization plane of iSimBioSys.

Figure 9a: System CPU usage during simulation run.
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In the rest of the section, we start with a brief description of the wet 
lab experimental system, moving on to present the detailed results of in 
silico analysis. We show how the discrete event simulation framework 
can be used for hypothesis-driven analysis of different conditions in 
silico for the PhoPQ system. Also, we quantify the performance metrics 
of the simulation for this test-bed system and study how the framework 
behaves in terms of memory usage, CPU usage, event queue size and 
method call graphs. 

6. 1 The wet lab experimental system 

The experimental setup, explained in [44], consists of reporting 
the system output of the phoPQ system on bacterial cells. Expression 
of destabilized green fluorescence protein (dEGFP) under the control 
of a PhoPp (phosphorylated PhoP) responsive promoter was used as 
the reporter system. The expression of dEGFP was measured as the 
surrogate output of the system behavior when subjected to various 
levels of Mg2+ in the growth medium. Initial experiments with two 
different levels of Mg2+ namely 8 μM (low) and 1 mM (high), suggested 
that the system behaved similar to a toggle switch. Bacterial cells were 
grown in two different media: low and high Mg2+ media. After they 
entered the logarithmic growth phase, the respective growth conditions 
were switched. 

In the experimental system, low Mg2+ was maintained for a 
period of 60 mins, during which the system output increased, after 
which the signal was toggled to high Mg2+. The measurements of the 
fluorometer were taken every 15 mins for the positive activation state. 
The experiments were repeated thrice and the mean of these three 
datasets were used for the experimental plots. All measurements were 
taken when the cells were in the logarithmic growth phase and were 
corrected for cell density and normalized for cell number. Figure 10 
shows the system output of the cell culture in time, both for high-
magnesium as well as low-magnesium conditions. Figure 11 shows the 
system behavior as observed for time of 60mins.

When the cells were in a culture of low (8µM ) magnesium medium. 
It shows how in low magnesium, the PhoPQ pathway is activated 
(as shown by increase in concentration of PhoPp). Similarly, Figure 
12 shows the toggling effect of the “on-off” switch mechanism when 

the system state was changed from high to low magnesium medium. 
Finally, in Figure 13, the effect of varying concentrations of magnesium 
in a low state (active) are captured for 100µM and 200µM respectively. 
Based on these experiments, we run the discrete event simulation to 
generate in silico results which capture the system output in time. The 
simulation initialization with different resource and system parameters 
are key to the success of the model. Also, the platform provides 
flexibility in changing these conditions and resources to generate 
synthetic, hypothetical results for a better understanding of the test 
system. In the next subsection, we outline the system and simulation 
parameters and present the results of the in silico experiment.

6. 2 In silico validation

In this section, we setup the “dry-lab” experimental system for 
the signal transduction and subsequent gene regulation pathway 
involved in the test-bed. The in silico experiment is initialized with the 
systemmolecular resources and biological parameters associated with 
the probability distribution functions of the different event holding time 
modules. In this experiment, we focused on parameters associated with 
the Salmonella bacteria cell based on the CCDB database [53] which are 
summarized in Table 3. The simulation also initializes other resource 
parameters like the number of molecules (in terms of concentration) 
for the different species involved in the system (e.g. ATP, ADP, 
PhoP, PhoQ, extracellular Mg. ions) and the gene regulatory pathway 
information extracted during the PhoPQ pathway creation phase. Once 
the system is initialized, the event queue is populated with the initial 
event list which determines the snapshot of the biological environment 
at simulation start time and the simulation engine is triggered. 

For the current system, the simulation focused on tracing the 
effects of signaling events (Mg. ion arrival and departures) on the 
expression dynamics of the PhoPQ pathway. Also, as a reporter 
protein (GFP) has been used in the wet-lab scenario to trace the 
system behavior, our results are focused primarily on PhoPp as the 
main resource whose dynamic temporal behavior was observed 
in the simulation. Although, the simulation can be configured to 
monitor and generate results for a wide range of system resources, 
PhoPp was chosen primarily to verify the wet-lab tests. The 
simulation experimental results denote resource states averaged 
over 100 runs of the simulation under the same initial conditions.  
 
In order to simulate similar conditions “in silico”, the simulation was 
configured to run with low Mg2+ for 60mins, during which no resource 

Figure 9b: Memory usage of iSimBioSys during simulation run.

Figure 10: Wet Lab results: Effect of Mg2+ on the system output (measured by 
the surrogate marker dEGFP)
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Figure 11: Wet Lab results: Effect of low Mg2+ (8μM) on the system output (mea-
sured by the surrogate marker dEGFP).

Figure 12: Wet Lab results: Effect on the system output when toggled from high 
to low Mg2+ concentration.

conflicts or starvation were assumed (i.e, the simulation would not 
stop due to lack of any resource). As seen in Figure 14, the simulation 
responds with continuous growth in PhoPp concentration, implying 
increasing dEGFP fluorescence. 

In another simulation experiment, the system 
was started with high Mg2+ which was switched to low
Mg2+ at 20mins which was kept low for 30 mins and toggled back to 
high. Figure 15 captures the system response under this scenario. In 
order to study the effect of varying concentrations, as reported, we 
capture similar conditions in silico in Figure 16, which captures the 
effect increasing Mg. concentration, leading to decrease in the rate of 
diffusion of Mg. ions from cell membrane to the environment, thereby 
causing a decrease in the rate of PhoPp production.

As seen from Figure 15 and  Figure 16, the effects capture by the 
simulation show similar dynamics to the wet-lab system. Also, the 
condition of no resource starvation shows relative smoothness in 
output as obtained from continuous system models since the effect of 
low copy number of molecules on stochasticity [16] is not displayed. 

The in silico platform allows the a alysis of the effects of stochasticity 
on the model by varying the resource states of the molecules involved 
in the simulation and also the sensitivity of the system outputs to the 

different parameters governing the event holding time distributions. In 
the next sub-section, we present a systematic analysis of the different in 
silico hypothesis tests.

6. 3 In silico hypothesis testing 

The in silico simulation model allows the modeler to test the system 
under various synthetic conditions, in terms of system resource states, 
initial conditions and different combinations of environmental cues 
driving the systems (for example, the diffusion of magnesium ions 
through the cell membrane in our case study). 

In order to capture the effects of varying the rate of diffusion of 
magnesium on the system output, we ran the simulation with increasing 
magnesium ion diffusion times (100ms, 1ms, 10ms) and reported the 
results for two key system resources, the proteins PhoQ, which is the 
sensory protein responsible for binding to magnesium ions, and the 
PhoP protein, which controls the dynamics of the gene expression. 
Figure 17 shows how the rate of decrease in the concentration of 
inactive PhoQ (phoQ molecule bound to a magnesium ion) is damped 
with increasing delay in the diffusion of magnesium ions out of 
the membrane. Also, capture in this graph is the effect of resource 
starvation on the biological system. As the Mg. ion initiated signal 
activates the PhoPQ pathway, the sensory PhoQ proteins are consumed 
by the system, thereby shutting down the pathway when all phoQ 
molecules available to the system have been used. Similarly, Figure 
18 captures the effect of the same conditions on PhoP. An interesting 
observation, not capture in the wet-test lab results, is the orchestration 
of the positive feedback loop of PhoP, as identified in the knowledge 
extraction phase. As seen in Figure 18, the concentration of PhoP in the 
system decreases initially; but once, the expression of genes is triggered 
by phoPp (phosphorylated PhoP), PhoP starts appearing in the system. 
The corresponding effect on PhoPp, which increases in concentration 
when magnesium ions depart from the membrane (activating the 
pathway) is captured in Figure 19. In both the graphs, the slowest rate 
diffusion does not bring the system into resource shortage phases while 
the other diffusion rates locks the system (plateau on Figure 19) due to 
non-availability of phosphorylated PhoP molecules. These graphs show 
how the tuning of different parameters (in this diffusion rates) can be 
synthetically manipulated to study different behaviors of the systems. 

Another in silico result, which is possible in our simulation 
framework is the profiling of different resources, which though key to 
the system as a whole, but may not be the focus of a current experiment. 
For example, it is possible to profile metabolites and energy molecules 
like ATP and ADP, to name a few. Also, the expression profile of a 
whole range of gene products, like proteins and enzymes can be traced 
in the simulation, providing an in silico gene profiling microarray. In 
Figure 20, we show the color coded protein profile of 3 proteins in our 
test bed pathway, as they unfold in time. The protein expression profile 
captures the stochastic fluctuations of the PhoP molecule as the system 
progresses in time, triggering the positive feedback effect of the phoP 
gene on the two-component pathway ( as shown in Figure 4). 

The in silico results on the test-bed pathway demonstrate the 
efficacy of the modeling and simulation approach for study cell-
level dynamics. Particularly, the flexibility in event scheduling and 
resource state specifications allows a modeler to validate the effects 
of high and low copy number of molecules on different parts of the 
biological system. Moreover, the flexibility allows the simulation to 
be computationally efficient depending on the required granularity of 
the biological model and the resource state space considered [54]. In 
the next section, we present a brief perspective on the computational 
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Figure 13: Wet Lab results: Effect on the system output with varying conc. of Mg2+ in low medium cell culture.

Figure 14: Simulated results: Effect of low Mg2+ on the in silico system.

Figure 15: Simulated results: In silico system output when Mg. conc. changes from high to low.
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requirements of our simulation system based on the test-bed cell-level 
biological experiment. 

6. 4 Performance metric of the simulation platform 

In order to measure the behavior of the simulation software 
framework, we have developed a memory and CPU usage monitor 
tool which runs in a parallel thread with the simulation. Considering 
the scenarios of the in silico experimental setup running for 60min 
of low magnesium, i.e. when the virulence genes are up regulated, we 
consider the response of the platform in terms of Java Virtual Machine 
(JVM) machine usage (total memory and free memory) and CPU usage 
of the particular process. Figure 21 and Figure 22 show the response 
to the above mentioned parameters. As can be seen in Figure 21, the 
simulation engine leads to an increasing usage of memory (decrease 
in size of free heap memory) as the event queue size increased with 
more gene expression events generated in the system. Also, it can 

be noted that as the size of free memory falls below a threshold, the 
garbage collector agent (gc) of the JVM is invoked which increased 
allocated memory and increases the size of free heap temporarily 
before starting to decrease again (the saw-tooth nature of the encircled 
region in Figure 21). On the same lines, the CPU usage of the process 
increases around the same region Figure 22). A spline invariant curve 
has been fitted to the CPU usage data to present a handle on the overall 
nature of usage by the process. A call graph for the different methods 
of the simulation was generated at run-time using a run-time java code 
profiler to capture the distribution of method invocation for the core 
engine, an analysis of which is presented in Table 4. 

It is pertinent to mention here that the population of the initial 
event list, together with the fact the event list can be scheduled in 
“batches” rather than on individual events provides immense flexibility 
to the system in terms of: 

•	 The biological system can be configured to start simulation 
at different time-points and states by appropriating 
scheduling “event batches” which update the system resources 
correspondingly 

Figure 16: Simulated results: Effect of chaining Mg. conc. on the simulation 
system output.

Figure 17: Simulated results: Change in conc. of membrane PhoQ.

Figure 18: Simulated results: Change in conc. of membrane PhoP.

Figure 19: Simulated results: Change in conc. of membrane PhoPp.
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6. 5 Novelty of the simulation platform 

Based on the discussions in the previous sections, we can outline 
the novelty of the proposed simulation approach in comparison to 
existing stochastic simulation schemes in the following: 

•	 In existing platforms, the details of the biological functions 
have to be captured through biochemical reactions having 
exponential event completion times and the rate constants need 
to be determined experimentally; our stochastic models [45-
48,50,56-66] allows separate biological events to be modeled 
parametrically to (a) accurately predict the rate constants and 
the event holding time distributions and (b) determine the 
probabilities of occurrence of each event type at discrete time 
instants. 

Stochastic 
fluctuations 

Figure 20: Simulated results: Protein expression profiling.

•	 Event batch scheduling can be used to sufficiently speed up 
the simulation [54], particularly in cases where difference in 
time-scales of event execution times can cause “stiffness” in 
simulation [23]. This technique is similar in concept to the tau-
leaping and binomial leap techniques [23] which have been 
applied in stochastic simulation models based on Gillespie 
algorithm [19,20] and its variants [22]. 

As a concluding remark for this section, it may be mentioned that 
the performance metrics are all for the computer system configuration 
mentioned in the earlier section and with the JVM executing the 
simulation process only, while no other user space process is running 
on the computer system. The graphs also report the average memory 
and processing usage over 100 runs of simulation for each in silico 
experiment.

 

 

Higher usage 
of memory 

Figure 21: Virtual machine memory usage under execution scenarios of 60mins.

 

Higher usage 
of CPU 

Figure 22: CPU under execution scenarios of 60mins.
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•	 Current techniques face computational challenges at a “system 
level” when the number of biochemical reactions in the system 
becomes extremely large; our platform allows building a 
flexible multi-scale framework to alleviate this challenge. 

•	 The SSA often suffers from simulation stiffness; our platform 
provides one the capability of redefining an event, e.g., a set of 
faster biochemical reactions (see our earlier works [58,60,61]) 
so as to approximately alleviate stiffness. 

7. Conclusion and Future Work 
In this paper, we have outlined a discrete event based stochastic 

modeling and simulation framework for studying the complex 
dynamics of biological processes. The central theme of this approach 
is based on developing probability distributions of the holding 
times of the different biological events associated with a process and 
simulating the temporal dynamics of the molecular events using the 
discrete event simulator. Currently, our technique is focused on cell-
level signal transduction and gene regulatory pathway dynamics. The 
performance of the simulation framework indicates its suitability 
on different hardware and software platforms. Although, the 
current system works on uniform scales of time (~1000millisecs), 
discrete event based stochastic simulation techniques have been 
used extensively in networking studies to study systems dynamics at 
multiple spatio-temporal scales. We are currently working on a hybrid 
simulation framework which captures the ensemble dynamics of gene 
regulatory networks (operating in ~1000millisecs time-scale) together 
with metabolic networks (operating in ~1millisecs time-scale). The 
flexibility of the modeling technique in abstracting the system at 
different levels of granularity based on existing knowledge, coupled 
with the computational power of the simulation framework allows 
a stochastic event based simulation system to provide an effective in 
silico framework, in conjunction with accurate and detailed modeling 
of system parameters, for developing hypothesis tests prior to actual 
wet-lab experiments. 
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