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Introduction
The prevalence of dementia is expanding worldwide, in conjunction 

with the increase in life expectancy. Dementia is a serious global 
health issue due to the associated disability and dependence and 
therefore is a significant economic, social and public health burden 
[1,2]. Development of predictive markers and effective treatments for 
dementia is thus urgently needed.

Recent epidemiological studies reported diabetes as a risk factor for 
dementia, including Alzheimer’s disease (AD) and vascular dementia 
(VaD), as well as cardiovascular diseases [2-4]. Possible underlying 
mechanisms of diabetes-related dementia include multifactorial 
pathways implicated in hyperglycemic toxicity, microvascular diseases, 
chronic inflammatory processes, and changes in insulin metabolism, 
which ultimately lead to small vessel infarcts, neuroinflammation, 
amyloid-β accumulation and neurodegeneration in the brain [2-
5]. Conversely, obesity has also been implicated to play a role in the 
development of dementia in later life [6]; however, a recent study 
reported an inverse monotonic association between body mass index 
(BMI) and dementia incidence [7]. Thus, the potential role of obesity in 
the development of dementia remains controversial. Although dementia 
might be prevented or at least delayed in some cases, factors exhibiting 
preventive effects on dementia remain to be elucidated [8].

Genome-wide association studies recently revealed novel 
significant associations between variants of the gene triggering receptor 
expressed on myeloid cell 2 (TREM2) and a high risk for AD and other 
neurodegenerative diseases [9-12]. Following these initial observations, 
an exponentially growing number of basic and clinical studies have 
focused on the pathological roles of TREM2 in the development and 
progression of dementia. More recently, we reported the first study 
delineating the pathological implications of serum TREM2 in cognitive 
impairment in non-obese type 2 diabetic patients [13]. Here, we review 
the characteristics and recent findings regarding TREM2 and discuss 

the possibility of TREM2 as a novel target to predict and treat cognitive 
dysfunction.

Structure, Function and Features of TREM2
TREM2 is a 230-amino-acid V-type immunoglobulin domain-

containing transmembrane protein consisting of an extracellular domain, 
a transmembrane domain, and a short cytosolic tail lacking an obvious 
amino acid-based signaling motif [14]. TREM2 is exclusively expressed 
on myeloid lineage cells including dendritic cells, tissue macrophages, 
osteoclasts, and microglia [11,12]. Many potential ligands for TREM2 
have been proposed, which are characterized based on the type of anionic 
and/or lipidic species, such as bacterial components, mammalian cellular 
membrane components and lipoproteins [15]. TREM2 interacts with the 
adaptor protein DNAX-activating protein 12 (DAP12)/TYRO protein 
kinase binding protein (TYROBP) via its transmembrane domain. 
Following binding to its ligands, TREM2 facilitates DAP12 phosphorylation 
on tyrosine residues within its immunoreceptor tyrosine-based activation 
motif region, thereby mediating downstream signaling that leads to various 
cellular functions including survival, phagocytosis and inflammation [10-
12,16]. One remarkable characteristic of TREM2 is the release of its soluble 
ectodomain fragment, soluble TREM2 (sTREM2), into the extracellular 
space via proteolytic cleavage at the site in the juxtamembrane region by 
shaddases such as a disintegrin and metalloproteinase domain-containing 
protein 10 (ADAM10) [17-20]. Although not much is known about the 
pathophysiological significance of sTREM2 in comparison with TREM2, 
recent studies demonstrated several novel aspects of sTREM2, which are 
reviewed in the next section.
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Emerging Implications of TREM2 and sTREM2 in 
Neurodegenerative Diseases
Pathophysiological significance of TREM2 and sTREM2 in 
AD and other neurodegenerative diseases

TREM2 is selectively expressed on microglia in the brain, the main 
cell type responsible for maintaining brain homeostasis that also plays 
a role in inflammatory response. Accordingly, recent studies reporting 
that the R47H TREM2 mutation was associated with an approximately 
3-fold increase in AD risk in humans [9-12] had a deep impact and ripple 
effect based on the possibility that TREM2 and TREM2-expressing 
microglia might be novel key targets for elucidating mechanisms 
underlying AD pathogenesis. Recent accumulating evidence reveals an 
association between a diverse array of TREM2 variants and risk for AD 
and other neurodegenerative diseases [10-12]. These variants include 
mutations affecting TREM2 structure/function such as the generation 
of a truncated protein (W44X or W78X variants) [21], inability to 
associate with its intracellular adaptor, DAP12/TYROBP (K186N 
variant) [21], reduction in ligand binding ability (R47H variant) [22-
24], alteration of subcellular localization (reduction on cell surface 
and increase in endoplasmic reticulum in T66M or Y38C variants) 
[18,25] and accelerated proteolytic loss from the cell surface (H157Y 
variant) [19,20]. Therefore, TREM2-related microglial dysfunction 
can potentially lead to the impairment of brain homeostasis including 
amyloid-β clearance, possibly leading to neuronal injury and cognitive 
dysfunction. Therefore, further characterization of TREM2 will 
allow us to gain a better understanding of its pathological roles in 
neurodegenerative diseases.

It is increasingly evident that microglia phenotypes are much more 
complex than previously thought, irrespective of whether they express wild-
type or variant TREM2. TREM2 is assumed to exhibit anti-inflammatory 
roles, mainly based on in vitro analyses; however, recent growing evidence 
highlights the pro-inflammatory roles of TREM2 in in vivo disease settings 
[12] and suggest pathological implications of TREM2-expressing microglia 
in neuroinflammation and concomitant neurodegeneration, with a shift in 
microglial phenotypes from homeostasis to disease states.

sTREM2 is detected in human blood and cerebrospinal fluid 
(CSF), and CSF sTREM2 levels are elevated in patients with 
neurodegenerative diseases compared to healthy controls [18,26-30]. 
Whereas CSF sTREM2 is a topic of great interest as a potential marker 
for neurodegenerative diseases, the pathophysiological significance 
of serum blood sTREM2 remains unclear. Additionally, the function 
of sTREM2 has not been elucidated, although elevated sTREM2 
levels in CSF have been suggested to reflect microglial activation in 
response to neuronal degeneration [27-31]. In this respect, recent 
studies uncovered sTREM2 as not just an inactive end-product but 
also a signaling molecule [15] that promotes macrophage survival by 
preventing apoptosis [32] and activates microglia to ultimately trigger 
inflammatory responses and prolong survival [33]. These findings hint 
at the pathological implications of sTREM2 in chronic inflammation, 
and further elucidation of the pathophysiological roles of CSF and 
blood sTREM2 will provide significant novel clues on the regulation 
of central and systemic inflammation by targeting sTREM2 and/or 
sTREM2-related processes such as proteolytic production.

Pathophysiological significance of TREM2 and sTREM2 in 
metabolic diseases with increased risk for neurodegenerative 
diseases

Not much is known about the pathophysiological significance 

of TREM2 and sTREM2 in cognitive impairment in patients with 
metabolic diseases, despite studies demonstrating metabolic diseases as 
risk factors for AD and VaD. In mouse models of insulin resistance/
diabetes, an early study showed elevated TREM2 expression in 
mesenteric adipose tissue [34]. Further, activated TREM2-expressing 
microglia/monocytes were found to accumulate in hippocampus in 
response to a high-fat diet in aging mice and in a mouse model of AD 
[35]. In humans, a recent study reported that serum sTREM2 levels 
were associated with the exacerbation of glucose/lipid metabolism 
in diabetic conditions [36]. However, there are currently no studies 
elucidating the pathophysiological roles of TREM2 and sTREM2 in 
cognitive impairment in patients with metabolic diseases.

We recently provided the first report that addressed these issues in a 
cross-sectional approach using a database of a multicenter prospective 
observational cohort study [13]. Our analysis revealed that cognitive 
function was more exacerbated in non-obese type 2 diabetic patients 
compared to obese type 2 diabetic patients. In addition, whereas 
serum sTREM2 levels did not differ between the two patient groups, 
the elevation in serum sTREM2 levels was significantly associated 
with the risk of cognitive impairment in non-obese diabetic patients. 
Importantly, no such significant association was found in obese diabetic 
patients in whom elevated systolic blood pressure was associated with an 
increased risk of cognitive impairment. Moreover, we found that serum 
sTREM2 levels were positively correlated with diabetes-associated 
risk factors of dementia, including hyperglycemia and exacerbation of 
inflammation, and negatively correlated with adiponectin level in non-
obese diabetic patients. However, these correlations were not observed 
in obese diabetic patients. Overall, these findings suggest that serum 
sTREM2 levels might be a potential novel marker of the diabetes-
associated cognitive impairment in non-obese diabetic patients. 
Additional studies are critical to elucidate the mechanisms underlying 
the relationship between sTREM2 and cognitive dysfunction in diabetic 
patients. In this context, our recent findings provide potential novel 
strategies for reducing the risk of cognitive impairment and reveal that 
serum sTREM2 levels might have utility as a marker in prevention and 
early management hyperglycemia and aggravation of inflammation in 
non-obese diabetic patients. In addition, early control of systolic blood 
pressure might be effective in obese diabetic patients.

Future Perspectives
Recent remarkable advances in TREM2 research led to novel 

insights into the pathological significance of TREM2 and sTREM2 
in AD and other neurodegenerative diseases as well as in metabolic 
diseases with increased risk for neurodegenerative diseases. These 
revelations further hint at the possible implications of TREM2 and 
sTREM2 in other cognitive dysfunction-causing diseases such as 
cerebral amyloid angiopathy [37]. Accordingly, future findings are 
expected to give prominence to the significance of TREM2 and 
sTREM2 as key targets in prediction, prevention and/or improvement 
of cognitive dysfunction.

Emerging pathological roles of TREM2 and sTREM2 raise new 
issues that need to be addressed. One instance is the mechanistic 
details underlying the phenotypic shift in microglia from an anti-
inflammatory to a pro-inflammatory state, which might trigger chronic 
neuroinflammation and account for inconsistencies reported regarding 
the phenotypes of TREM2-expressing microglia. Another important 
issue is the elucidation of the mechanisms regulating ADAM10-
mediated sTREM2 release under steady-state and disease conditions. 
ADAM10 is also involved in amyloid precursor protein processing to 
release amyloid-β and ADAM10 mutations confer increased risk of AD 
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[38,39]. Elucidation of the effect of ADAM10 mutations on sTREM2 
production as well as the impact of TREM2-expressing microglia 
on their pro-inflammatory status and subsequent sTREM2 release 
should reveal novel pathological implications of ADAM10 in TREM2-
expressing microglia-associated neuroinflammation.

Recent findings suggest several directions for future research 
regarding potential factors affecting microglial phenotypes. Microglial 
maturation and function were reported to be influenced by gut 
microbiota-derived metabolites, albeit through unidentified pathways 
[40]. In addition, the diversity and stability of gut microbiota were 
shown to alter in conjunction with aging or metabolic diseases such as 
diabetes [41,42]. These alterations in gut microbiota in turn increase 
the permeability of gut and blood-brain barriers, thereby triggering 
systemic and central inflammation and leading to the development of 
neurodegenerative diseases [42,43]. Accordingly, it remains possible 
that TREM2 might function as a receptor for gut microbiota-derived 
molecules during aging or metabolic diseases and might modulate 
microglial phenotypes to push towards a pro-inflammatory axis. In 
this respect, gut microbiota-targeted intervention might contribute to 
TREM2-mediated improvement of microglial phenotypes.

Conclusion
Recent research on TREM2 has provided a deeper understanding 

of the mechanisms underlying the development and progression of 
cognitive dysfunction in patients with AD and other neurodegenerative 
diseases as well as metabolic diseases with increased risk for 
neurodegenerative diseases. Future basic and clinical research 
elucidating the pathophysiological significance of TREM2 will reveal 
new avenues for preemptive medicine for dementia.
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