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Abstract
Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These 

lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Current studies are 
focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial 
lipid titers. R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model 
compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. This review 
will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, 
increasing lignin solubility, enriching for low molecular weight lignin compounds and laccase supplementation.
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Introduction
Transportation consumes a vast amount of energy in the United 

States [1-3]. In 2016, the total U.S. primary energy consumption was 
about 97.4 quadrillion Btu, of which, 86% was consumed from energy 
produced domestically (83.9 quadrillion Btu). Petroleum, natural gas 
and coal, accounted for the majority of the nation’s energy production, 
with the following breakdown: 28% petroleum, 33% natural gas, 17% 
coal, 12% renewables (including wind and solar) and 10% nuclear 
electric power [4]. With the world population growing, identifying 
sustainable fuel alternatives is imperative due to the finite amount of 
global petroleum, rural development challenges and environmental 
concerns [5]. Lignocellulosic biomass is a renewable carbon source for 
the production of biofuels and other products. Interest in producing 
renewable biofuels has been increasing over the last few decades [5-
13]. Lignocellulosic biomass is an ideal resource for biofuel production, 
because it can reduce fossil fuel dependence, greenhouse gas emissions, 
and is an abundant resource. Lignin sources can be carefully selected as 
to not compete with food sources [14-16]. Identifying biodegradable, 
renewable, substitute fuels with properties similar to petroleum diesel will 
allow for compatibility within the existing transportation infrastructure. 
Prices fluctuate based on many factors but currently biodiesel 
production costs currently range from $105-$115 per barrel while crude 
oil is currently selling at $45 per barrel [17-19]. The cost associated 
with the development of biofuels remains challenging; therefore the 
development of novel lignocellulosic biomass deconstruction strategies 
and fermentation platforms to reduce the cost of biorefining biomass to 
biofuels will be vital to establishing sustainable biofuels [2]. 

Using lignocellulosic biomass to produce biofuels 

Lignocellulosic biomass (i.e., wood, energy crops and agriculture 
residues) is an ideal renewable feedstock for the production of biofuels [20]. 
However, bioconversion of these substrates to sugars and subsequently 
cellulosic ethanol and other fungible fuels is hindered by lignin which 
often contributes to the recalcitrance of biomass and does not contribute 
to fuels production with today’s biological conversion platform [21]. 
Lignocellulosic biomass consists of cellulose, hemicellulose, and lignin, 
which form a complex, rigid, and recalcitrant structure that is resistant 
to biological and chemical degradation [22,23]. The organic compound 

compositions vary depending on the particular lignin feedstock (i.e., 
switch grass (% dry basis): cellulose (42%), hemicellulose (25%), and 
lignin (18%) [24]. Compared with plant polysaccharides, lignin is 
generally regarded as a more complex polymer and has received much 
less attention as a resource for biofuel production. 

Lignocellulosic biomass pretreatment strategies

There are a variety of pretreatment methods to reduce lignin 
recalcitrance, however not all the products or residues of these 
pretreatments have been used in lipid production fermentations, 
and therefore have not been studied in-depth to know the effect on 
oleaginicity/lipid yield. To be effective, pretreatment methods must 
disrupt the plant cell wall to enhance access of hydrolytic enzymes 
to plant polysaccharides to yield the desired microbial metabolism 
products. Current methods include alkali treatment, acid treatment, 
steam explosion, oxygen delineation, organosolv pretreatment 
among others [8,25-30]. Some of these pretreatment strategies 
enrich lignin oligomers and have resulted in sugar yields of 90% [31]. 
Dilute acid pretreatment followed by simultaneous saccharification 
and fermentation is a commonly employed pretreatment strategy 
to produce sugars for bioethanol production [32,33]. Dilute acid is 
sufficient to hydrolyze hemicelluloses; however, hydrolysis of cellulose 
requires more extreme conditions. In ethanol production, dilute-acid 
pretreatment is commonly coupled with simultaneous saccharification 
and fermentation to convert sugars to ethanol [21,34-36]. The released 
sugars can then be metabolized by yeast and the resulting lignin-rich 
residue can be utilized by aromatic-metabolizing oleaginous organisms. 
The thermal and chemical (alkaline and/or oxidative) pretreatments 
result in the degradation of β-O-4 moieties and aromatic ring openings. 
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While these numbers are low compared to yields on lignin model 
compounds [55], EOL did support growth and lipid production. 
Ultrasonicating the EOL substrate did increase solubility but did not 
increase lipid production. These results suggest that lignin must be 
first converted into aromatic compounds via a pretreatment to increase 
oleaginicity and lipid titers in R. opacus. Wells et al. used the effluent 
from EOL as the carbon source in R. opacus fermentations to produce 
organism with increased oleaginicity (27%) [3] (Table 1, #2). Typically, 
effluent fractions are discarded as industrial wastewater but here it was 
shown to be a viable feedstock for the production of microbial lipids 
possibly due to the increased solubility of lignin compounds. Wei 
showed that oleaginicity can be improved (28%) when substrates are 
detoxified by the removal of inhibitors such as hydroxymethyl-furfural 
[70] (Table 1, #3). Fermentations of Kraft lignin from black liquor by 
R. opacus also resulted in poor lipid titers (<0.01 mg/ml) and strain 
oleaginicity [71] suggesting that pretreatments were necessary to 
improve the properties of Kraft lignin. It was hypothesized that lowering 
molecular weight via various pretreatments would result in higher 
lipid titers. Lignin depolymerization generates diverse low-molecular 
weight compounds which can be more readily processed [72]. Oxygen-
delignification (O2-delignification) is a pretreatment strategy that uses 
oxygen and alkali to remove the residual lignin from cellulose fibers 
at increased temperatures [73]. Significant structural changes appear 
in the lignin after O2-delignification [74-77] resulting in a decrease 
in molecular weight. To obtain smaller molecular weight Kraft lignin, 
oxygen-pretreatment (O2-pretreatment) was carried out on Kraft lignin 
under alkaline conditions which lowered the molecular weight of the 
lignin and when treated with R. opacus resulted in increased oleaginicity 
(14%) and an increase in lipid titers (0.07 mg/ml) [57] (Table 1, #4). 
Alternatively, Zhao supplemented R. opacus fermentation with Kraft 
lignin with laccases which resulted in an increase in lipid titers (0.15 mg/
ml) [78] (Table 1, #5). Laccases aid in lignin depolymerization allowing 
for selective degradation of different lignin functional groups probably 
improving the usage of the lower molecular weight lignin molecules 
[78]. 

Pyrolysis which uses heat to decompose wood and grass biomass is a 
promising pretreatment for production of biofuels from lignocellulosic 
resources. The liquid products from pyrolysis are known as pyrolysis 
oils which separate into two immiscible phases: heavy oil and light oil 
[79]. A pyrolysis light oil fraction of switch grass used as the sole carbon 
source in a fermentation with R. opacus resulted in increased oleaginicity 
(22-26%) and improved lipid titers (0.06-0.12 mg/ml) (Table 1, #6). The 
pyrolysis resulted in low molecular weight water-soluble substances in 
light oil fraction which seems to play a role in oleaginicity and improved 
lipid titers [79]. 

To date, the pretreatment strategy and lignin substrate that has 
resulted in one of the highest oleaginicity and production of lipid titers 
in R. opacus is a two-stage alkali/alkali-peroxide pretreatment of corn 
stover [80]. The rigorous and chemically-efficient two-stage chemical 

Specifically, for alkaline pretreatments, the lignin degradation is 
achieved by cleavage of aryl ether bonds, Caliphatic-O-Caromatic or 
Caromatic-O-Caromatic resulting in ring opening, degradation, and 
solubilization [37]. Pretreatment effluents and lignin that are highly 
soluble in solution or result in low molecular weight fractions of lignin 
are more easily utilized by the microorganisms.

Oleaginous lipid accumulation in Rhodococcus opacus

Oleaginicity refers to the ability of a microorganism to accumulate 
oil contents in excess of 20% of its cell dry weight [38]. Examples of 
oleaginous microorganisms are yeast, fungi, bacteria, and microalgae, 
which can produce microbial oils, often referred to as single cell oils 
[39]. Yeast and microalgae synthesize triacylglycerides (TAG), while 
prokaryotic bacteria generate specific lipids. Most oleaginous organisms 
produce TAG, which are the main component of biodiesel production, 
achieved by reacting the TAG with an alcohol in the presence of an 
acid or alkaline catalyst. This process is called transesterification, which 
generates fatty acid methyl esters (FAME, biodiesel) and glycerol as a 
by-product [40]. To determine oleaginicity, the total FAME detected by 
GC-MS is related back to the original mass of cells (dry cell weight) used 
for the transesterification process. 

Oleaginous bacterial accumulation of lipids for biofuel production 
from industrial waste is being studied extensively [41-47]. Transcriptomic 
and proteomic studies have also identified TAG biosynthetic genes and 
proteins [48-53]. In previous years, the Gram-positive, oleaginous, 
soil bacterium Rhodococcus opacus has been studied for its ability to 
accumulate intracellular lipids >20%, based on cell dry weight (CDW) 
[54-60]. Some Rhodococcus strains exhibit oleaginicity above 80% 
CDW, when glucose is utilized as a carbon source under nitrogen-limited 
conditions [61,62]. When glucose is not used, Rhodococcus strains 
can degrade aromatic compounds commonly found in lignocellulosic 
biomass [54]. 

Fermentations using different lignin substrates or 
pretreatments

The oleaginous soil bacterium of the family Rhodococcus is an 
emerging ideal candidate due to minimal cultivation conditions and 
broad substrate specificity [47,62,63]. R. opacus can metabolize and 
degrade aromatic compounds found in lignocellulosic biomass [64] and 
accumulate intracellular single cell oils [54-59]. Rhodococcus strains 
have been engineered to express enzymes to degrade cellulose [65] and 
xylose [66]. Co-fermentations using wild-type and engineered strains 
have also been successfully employed [67]. Rhodococcus is a model 
organism for lignin degradation because it can tolerate, grow on, and 
adapt to inhibitory compounds (furan and phenol derivatives) produced 
from thermal and chemical pretreatments of lignin [68,69].

Kosa and Ragauskas demonstrated that R. opacus could bioconvert 
native Loblolly pine ethanol organosolv lignin (EOL) to lipids with limited 
oleaginicity (~4%) and low lipid titers (0.02 mg/ml) [56] (Table 1, #1). 

# Lignin substrate Oleaginicity (%) Lipid Yield (mg/ml) Ref.
1 Pine ethanol organosolv lignin (EOL) or ultrasonicated EOL 4 0.02 [56]
2 Effluent from Pine EOL 27 NR [3]
3 Detoxified pine autohydrolysate 28-29 0.25-0.31 [70]
4 Kraft lignin (O2-delignification) 14 0.07 [57]
5 Kraft lignin supplemented with laccases NR 0.15 [78]
6 Pyrolysis light oil fraction from switch grass 22-26 0.06-0.12 [59]
7 Corn stover (alkali/alkali-peroxide pretreatment) 42 1.3 [80]

Table 1: Summary of studies involving R. opacus fermentations using different lignin substrates or pre-treatments. 
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pretreatment provided higher concentrations of solubilized glucose and 
lower molecular weight lignin degradation products thereby promoting 
improved oleaginicity (42%) and lipid titers (1.3 mg/ml) [80] (Table 1, #7). 

Conclusion
R. opacus is a model oleaginous organism capable of producing 

single cell oils from numerous aromatic compounds and lignocellulosic 
biomass. Research is ongoing in efforts to efficiently deconstruct 
complex lignin molecules in order to allow maximum lipid production 
and lignin degradation. Current studies have shown that R. opacus 
can grow and produce intracellular lipids from unmodified lignin 
substrates (i.e., pine EOL: 4% oleaginicity) but those lipids can be greatly 
increased (effluent from pine EOL: 27% oleaginicity) using effluents 
which are composed of soluble lignin compounds. Currently, R. opacus 
fermentations with a two-stage alkali/alkali-peroxide pretreatment of 
corn stover results in the largest improvement of oleaginicity (42%) 
to date. Engineered strains are currently being evaluated for increased 
oleaginicity under these improved fermentation conditions and novel 
pretreatment strategies are currently underway to determine the best 
conditions for maximum production of single cell oils.
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