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Introduction
Cocaine use among women has steadily increased, rising to 

approximately 30% of users in the United States. As researchers pay more 
attention to hormonal effects on drug abuse, it is becoming apparent 
that men and women react differently to cocaine. Overall, women are 
more vulnerable to some aspects of cocaine abuse, such as being more 
sensitive to the addictive properties of cocaine, experiencing more 
nervousness after intermittent administration of cocaine, taking longer 
to feel its subjective effects, reporting less euphoria, and having more 
severe cravings in response to cocaine-associated cues [1-9]. Women 
also increase their rate of cocaine consumption more rapidly than do 
men, and once addicted it is more difficult for them to quit [9,10]. 
Likewise, after abstinence, women use cocaine for longer periods than 
do men [11,12].

Similar to humans, female rodents also show exaggerated and 
more robust psychomotor responses to cocaine than do males [13-16]. 
Females also more quickly develop cocaine-induced conditioned place 
preference (CPP) with lower doses and more readily acquire cocaine 
self-administration [17-20]. Taken together, human and animal studies 
suggest that sex-specific differences exist at all stages of cocaine abuse 
including induction, maintenance, and relapse.

Sex differences in the mesocorticolimbic dopamine (DA) system-
-a regulator of cocaine’s psychomotor and rewarding effects have been 
demonstrated [21-24]. As recently reviewed by Becker and Hu [9], 
there are sex differences in the levels of DA receptors in the striatum, 
in the efficacy of DA antagonists and agonists to block DA receptors, 
and in cocaine-induced accumbal DA release/reuptake. The sexually 
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Background: Sex differences in intracellular dopamine pathways may contribute to the known sex differences 

in psychomotor responses to cocaine and differential development of dependence. This study aimed to determine 
whether there are sex differences in the activation of the extracellular signal-regulated kinases (ERK1/2, or p44/p42 
MAPK) and PKA phosphorylation-dependent substrates in the nucleus accumbens (NAcc) of male and female rats at 
baseline or after acute cocaine administration.

Methods: 60-day-old male and female Fischer rats were injected with saline or cocaine (30 mg/kg) and sacrificed 
5, 15, 30, 45 or 90 minutes later. Total locomotor activity, Stereotypic, rearing, and ambulatory behaviors was measured 
for 90 minutes using a two-frame automated Photobeam Activity

Results: Similar to our previous findings, total locomotor activities were higher in female rats after this single 
cocaine administration. Females had higher levels of phosphorylated PKA substrates after cocaine administration, 
and this change lasted longer and had a greater magnitude than in cocaine treated male rats.

Furthermore, although cocaine administration increased the phosphorylation of ERK proteins, there were no sex 
differences in p-ERK protein levels either at baseline or after acute cocaine administration.

Conclusion: Taken together, these findings suggest that sex differences in basal and cocaine-induced alterations 
in PKA signaling activity in the NAcc may contribute to sex differences in psychomotor responses to cocaine. 
However, not all the components of the DA-intracellular signaling pathway maybe heightened in female rats as ERK 
phosphorylation patterns did not differ between the sexes.

dimorphic pattern in DA system activation after cocaine treatment is 
postulated to be correlated with sex differences in cocaine-induced DA-
mediated intracellular responses.

Behavioral studies have shown a positive association between 
protein kinase A (PKA) signaling changes and behavioral responses 
after cocaine administration [25,26]. Specifically, administration of a 
PKA activator or a PKA inhibitor enhances or dampens, respectively, 
acute cocaine-mediated locomotor behavior and modulates the 
cocaine-induced CPP [27,28]. PKA activation also potentiates 
behavioral sensitization after chronic cocaine administration [28,29]. 
Moreover, intra-accumbens injection of PKA activator in rats increases 
cocaine self-administration. By contrast, intra-accumbens infusion of 
PKA inhibitor decreases cocaine self-administration [30]. It is therefore 
feasible that sex differences in cocaine’s modulation of the DA-PKA 
signaling pathway in the NAcc may contribute to sex differences in 
the initiation and development of the rewarding properties of cocaine. 
Indeed, three recent studies have found sexually dimorphic responses 
to cocaine in the DA-PKA signaling pathway.
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Nazarian et al. [22] demonstrated that PKA protein levels in the 
NAcc are higher in females both before and after cocaine administration; 
Lynch et al. [31] showed that protein levels of DA- and cAMP-regulated 
phosphoprotein of Mr 32 kDa (DARPP-32) are also higher in females 
after cocaine administration and Zhou et al. [32] found basal and 
cocaine-induced sex differences in the PKA-DARPP-32 cascade. 
Together, these studies suggest that sex differences both at baseline and 
after cocaine-induced alterations in the DA-PKA signaling pathways 
in the NAcc may contribute to patterns of sexual dimorphism in the 
initiation and development of addictive responses to cocaine.

The intracellular cascade of extracellular signal-regulated kinases 
(ERK1/2, or p44/p42 MAPK) -- one of several mitogen-activated 
protein kinases (MAPK) -- has been postulated to be involved in 
psychostimulant addiction. In mice, acute cocaine treatment induces 
a rapid and transient increase in the ERK protein phosphorylation 
(p-ERK) in the NAcc, which can be abolished by pretreatment with 
a DA-D1 receptor antagonist [33-35]. Behaviorally, the cocaine-
induced hyper-locomotor activity and the development/expression of 
sensitization and CPP are attenuated by treatment with ERK inhibitors 
[36-39]. Recent studies on ERK mutant mice indicated that, owing 
to the hyper-phosphorylation of ERK protein, mutated mice show 
stronger psychostimulant (e.g., cocaine) induced CPP and behavioral 
sensitization than do the wild-type controls [40,41].

However, it is not known if the stronger and longer-lasting cocaine 
responses in females (including CPP and psychomotor activation) are 
related to a disregulation of the ERK-mediated intracellular responses. 
Cyclic AMP response element binding protein (CREB) is a transcription 
factor that is involved in modulating the psychomotor and addictive 
properties of cocaine [42]. According to one report, enhanced activation 
of ERK enables and mediates cocaine-induced CREB phosphorylation 
in the NAcc [36]. However, others have found that cocaine-induced 
ERK and CREB phosphorylation are dissociated in many brain regions 
[43,44]. After cocaine administration, pCREB levels in the NAcc are 
induced for a longer time in male rats, but the magnitude of change 
in pCREB levels is higher in female rats [22]. Because pCREB is a 
substrate of the ERK pathway, we hypothesized that p-ERK activation 
closely follows the previously reported observation for pCREB and 
that differences in basal or cocaine-induced alterations in ERK levels 
have a sexually dimorphic pattern. The aim of this study was to test this 
hypothesis by measuring basal and cocaine-induced ERK proteins and 
p-(Ser/Thr)-PKA substrates in male and female rats.

Methods
Animals

60-day-old male and female Fischer rats (Charles River, Raleigh, 
NC) were individually housed in Plexiglas chambers (20 × 20 × 41 cm) 
layered with beta chips. Rats were given free access to food and water 
and maintained on a 12 hour light/dark cycle (lights on at 9:00 AM). All 
rats were weighed, handled, and intraperitoneally injected daily with 
saline for 5 consecutive days prior to testing. For behavioral testing, 10 
rats per group were used. For protein analysis, 4 rats per group were 
used.

Repeated vaginal lavage attenuates cocaine-induced activity, 
abolishes estrous cycle effects, and establishes CPP in female rats, thus 
possibly increasing DA-mediated responses [45]. Therefore, as noted 
by Walker et al. [45], the use of lavaged female rats could skew female 
behavioral responses when making side-by-side comparisons with male 
rats. For this reason, females were randomly assigned to experimental 
groups without regard to their estrous cycle. Animal care and use was in 

accordance with the Guide for the Care and Use of Laboratory Animals 
(NIH publication 85-23, Bethesda, MD) and approved by the Hunter 
Institution Animal Care Use Committee.

Materials

Cocaine hydrochloride and p-ERK primary antibody were 
purchased from Sigma Chemical Co. (St. Louis, MO). Phospho-(Ser/
Thr) PKA substrate-specific antibody measures the levels of substrate 
phosphorylation by PKA, a class of kinases referred to as Arg-directed 
kinases or AGC-family kinases that share a substrate specificity 
characterized by Arg at position -3 relative to the phosphorylated Ser 
or Thr. This antibody detects phosphorylation by PKA to substrates 
that contain a phospho-serine/threonine residue with arginine at the 
3rd position (Cell Signaling Technologies; Beverly, MA). Phospho-(Ser/
Thr) PKA antibody substrates include Apaf-1, CAMKII, Caspase-10, 
Caspase-2, CREB, and NMDAR1, among others (see Cell Signaling 
#9621). Alpha--tubulin antibody was purchased from Santa Cruz 
Technologies (Santa Cruz, CA). All appropriateSecondary antibodies 
were purchased from Amersham Pharmacia (Piscataway, NJ).

Cocaine administration

Cocaine solutions were prepared on the day of testing by dissolving 
the drug in physiological saline (0.9%). On the day of testing, rats were 
injected (i.p.) with saline or cocaine (30 mg/kg) and sacrificed 5, 15, 
30, 45 or 90 minutes later. Rats were returned to their home cages after 
drug treatment.

Behavioral measurements

All behavioral measurements were conducted in the rat’s home cage. 
Behavioral activity was measured only for the male and female groups 
sacrificed at 90 minutes after drug treatment. Total locomotor activity 
was measured for 90 minutes using a two-frame automated Photobeam 
Activity System (San Diego Instruments; San Diego, CA). Total activity 
was determined by total counts of any photobeam interruptions in the 
lower or upper frame. Stereotypic, rearing, and ambulatory behaviors 
for these rats were previously reported [22].

Tissue collection

After decapitation (following a brief 20 second exposure to CO2), 
their brains were removed, flash frozen in 2-methylbutane (-40°C), 
and stored at -80°C until used. The NAcc was dissected from coronal 
sections (1 mm thick) using a matrix (ASI Instruments; Warren, MI). 
The NAcc (including both shell and core) was dissected from coronal 
sections ranging from 1.70 to 1 mm anterior to the bregma (1 mm 
thick) by using a brain matrix. Tissue was homogenized with the use of 
a Polytron handheld homogenizer (Kinematica; Luzern, Switzerland) 
in homogenizing buffer [HEPES 7.9 (20 mM), KCl (10 mM), EDTA 
(1 mM), NP40 (0.2%), glycerol (10%), NAccl (200 mM), pepstatin, 
leupeptin, DTT (1 M), aprotenin, PMSF (100 mM), NaF (50 mM), and 
Na3VO4 (1 mM)]. Total protein content was determined with use of 
a Bradford kit (Bio-Rad Laboratories; Hercules, CA). Samples were 
stored at -80°C until used.

Western blot analysis

Protein samples (40 µg) were boiled in Lammeli buffer containing 
5% β-mercaptoethanol and loaded onto 10% SDS-PAGE. Gels were 
electrophoresed, transferred to nitrocellulose membranes, and blocked 
for 60 minutes with 5% nonfat dry milk in tris-buffer-saline-tween 
(TBST, pH = 7.4) at room temperature. Membranes were probed 
overnight at 4°C with phospho- (Ser/Thr) PKA substrate antibody 
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(1:500) and p-ERK antibody (1:1000). After three washes with TBST, 
membranes were then incubated with their appropriate secondary 
antibody (1:1000) for 60 minutes at room temperature, followed by 
three more washes with TBST. Antibody binding was detected using an 
enhanced chemiluminescence kit (Amersham Pharmacia; Piscataway, 
NJ). Resulting films were scanned and quantified with a computer 
densitometer and ImageQuant software (Molecular Dynamics; 
Sunnyvale, CA).

To compare sex differences in the protein levels, samples from 
saline-treated male and female rats were loaded onto the same gel. 
Within each sex, to determine the time course of changes in protein 
levels after treatment, all saline- treated samples (5 min - 90 min), 
or cocaine-treated (5 min - 90 min) samples with saline control (5 
min), were run on the same gel. Four sets of gels were run for each 
determinant. To normalize band intensity to protein levels, membranes 
were re-probed with α−tubulin antibody (1:1000).

Statistical analysis

The time-course of locomotor counts was analyzed using three-way 

repeated measures analysis of variance (ANOVAs) for the variables sex 
(male vs. female), drug (saline or cocaine), and time (18 five minute 
time blocks for acute cocaine/saline). In addition, two-way ANOVAs 
(sex × drug) were used to determine differences of accumulative 
locomotor counts. For post hoc analysis, LSD tests were conducted 
when appropriate.

All protein levels are expressed as a ratio to α-tubulin levels. Data 
are presented as mean ± SEM. Within sex, one-way ANOVAs followed 
by post-hoc LSD analysis were used to determine differences during 
the time course. For comparison between sexes in cocaine-treated rats, 
percentage changes of protein levels between the cocaine-treated group 
and the average of protein levels in saline controls of the same sex were 
used. This approach was necessary because male and female samples 
were run in different gels. Independent t-test was used to evaluate any 
sex difference at each specific time point after cocaine administration. 
Statistical significance was considered to be p < 0.05 for all analyses.

Results
Overall, cocaine increased locomotor activity in both male and 

female rats (Drug main effect: F (1, 26) = 73.04, p < 0.001; Figure 1A). 
Female rats had higher cocaine-induced total locomotor activity [Sex 
main effect: F (1, 26) = 7.19, p < 0.02; Figure 1A] and longer-lasting total 
locomotor activity than did male rats [Drug × Sex × Time interaction: 
F (17, 468) = 2.32, p < 0.01; Figure 1B]. This behavioral activity was 
significantly higher during the final 40 minutes (time intervals 11-18) 
of the testing session in female rats (p < 0.05 for all comparisons; Figure 
1B).

Although no sex differences in basal p-(Ser/Thr)-PKA substrate 
protein levels were found (Figure 2A), a sexually dimorphic temporal 
pattern in p-(Ser/Thr)-PKA substrate protein levels was observed after 
cocaine treatment. In male rats (Figure 2B), although acute cocaine 
induced p-(Ser/Thr)-PKA substrate protein levels in the NAcc, one-
way ANOVA failed to reach statistical significance (F (5, 23) = 2.01, 
p = 0.13), as compared with the saline control (p < 0.05). In contrast, 
in female rats (Figure 2C), a significant time effect was seen after 
cocaine administration (F (5, 23) = 2.83, p < 0.05); p-(Ser/Thr)-PKA 
substrate protein levels were increased from 5 to 30 minutes after 
cocaine treatment as compared with saline controls (p < 0.05 for all 
comparisons). Sex differences were observed in overall levels of p-(Ser/
Thr)-PKA substrate protein (Table 1); female rats had higher p-(Ser/
Thr)-PKA substrate protein levels than males regardless of the time 
after cocaine injection (t (1, 38) = 2.98, p < 0.01). In addition, 5 and 
30 minutes after cocaine administration, p-(Ser/Thr)-PKA substrate 
protein levels in females were significantly higher than in males (t (1, 
6) = 2.77, p < 0.05; and t (1, 6) = 2.65, p < 0.05, respectively; Table 1).

Although no sex differences in basal or cocaine-induced protein 
levels of p-ERK were seen (data not shown), p-ERK protein levels in the 
NAcc of both sexes were increased after acute cocaine administration 
(F (5, 23) = 3.02, p < 0.05, and F (5, 23) = 4.25, p < 0.01, for males and 
females, respectively; Figure 3). Furthermore, the temporal pattern of 
p-ERK induction after cocaine administration was similar for males and 
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Figure 1: Total locomotor activities after acute saline or cocaine 
administration. Data are presented as either (A) the sum of activity or (B) 
mean ± SEM activity during 5 minute time block intervals. Saline-treated males 
are represented by open squares saline-treated females by open diamonds 
cocaine-treated males by solid squares, and cocaine-treated females by solid 
diamonds. N = 7-8 per group.
 * Represents statistically significant differences between male and female 
groups.  ^ Represents a Drug X Sex X Time significant interaction (p < 0.05).

5 min 15 min 30 min 45 min 90 min

Male Female Male Female Male Female Male Female Male Female

p-PKA substrate 24.5 ± 11.9 136.8 ± 38.7* 89.1 ± 33.8 77.7 ± 38.9 53.2 ± 31.6 144.3 ± 13.5* 41.2 ± 27.3 54.5 ± 24.7 -3.3 ± 22.2 74.4 ± 47.4
p-ERK 173.2 ± 34.9 231.4 ± 43.7 129.8 ± 4.6 155.6 ± 36.2 164.6 ± 19.3 207.0 ± 28.5 96.8 ± 15.1 100.3 ± 12.1 112.7 ± 15.5 94.2 ± 22.7

Data are presented as % change of protein levels ± SEM as compared to 5 min saline controls of the same sex.
* And bolded represents statistically significant differences between sexes. (N = 4 per group).

Table 1: Percentage change of p-(Ser/Thr)-PKA- substrate signaling and p-ERK protein levels in NAc. 
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females. In both sexes, p-ERK protein levels were significantly increased 
5 and 30 minutes after cocaine administration as compared with their 
respective saline controls (p < 0.05 for all comparisons; Figure 3). No 
sex differences in the magnitude of change of p-ERK protein levels after 
cocaine administration were observed (Table 1).

Discussion
This study further extends observations by Nazarian et al., Zhou et 

al., and Lynch et al. [22,31,32] by demonstrating that female rats have 
a functionally augmented PKA signaling transduction pathway. We 
report here that the phosphorylation of PKA substrates was induced 
differentially after cocaine administration. Cocaine may modulate ERK 
pathway signaling through the activation of DA-D1 as well as NMDA 
receptors [46]; e.g., inhibition of NMDA reduces cocaine-induced ERK 
activation [47]. The fact that neither the ERK pattern of phosphorylation 
nor the levels of activation differed between the sexes suggests that (1) 
cocaine’s effects on calcium-NMDA dependent mechanisms are not 
sexually dimorphic and/or (2) not all components of the females’ DA- 
intracellular signaling pathway are heightened.

No sex differences in basal phosphorylation patterns of substrates for 
PKA were observed. However, after cocaine administration, female rats 
had overall faster (activation after 5 minutes of cocaine administration), 
longer (males have activation lasting only up to 15 minutes, whereas 
females have activation lasting up to 30 minutes), and higher levels 
of PKA phosphorylation of its substrates (females have a higher 
percentage change in p-(Ser/Thr)-PKA substrate protein levels than 
do male rats). Nazarian et al. [22] showed that female rats have higher 
basal protein levels of PKA in the NAcc. Since the phosphorylation 

pattern of substrates for PKA before cocaine administration did not 
differ between the sexes, it suggests that the increases of basal PKA 
protein levels seen in the NAcc of females may lead to functional effects 
of the PKA pathway.

After acute cocaine administration, female rats have been shown 
consistently to have greater behavioral responses to cocaine [15,48]. 
Indeed, we found in this study that female rats exhibited longer-lasting 
and more robust psychomotor responses to cocaine. It is feasible that 
the augmented phosphorylation of PKA substrates in the NAcc of 
females may contribute to the observed increase in behavioral responses 
after cocaine administration. In fact, because many PKA substrates 
are also transcriptional factors known to be involved in modulating 
the psychostimulating and addictive properties of cocaine [22], a 
prolonged and more robust phosphorylation of PKA substrates may 
indeed provide more changes in protein activation and transcription in 
female rats. These changes, in turn, may further impel the differences in 
psychomotor responses between males and females.

Consistent with previous reports [34,39,43,46,49-51] after a single 
cocaine injection in male rats, a rapid and transient increase of p-ERK 
protein levels was observed. To our knowledge this is the first report 
that, as with males, p-ERK protein levels were also induced in the NAcc 
of female rats. Nazarian et al. [22] demonstrated that in female rats 
accumbal pCREB activation was more robust, but of shorter duration, 
than in male rats (in male rats pCREB protein levels increased 5 to 
30 minutes after cocaine administration, whereas in female rats they 
increased only at 5 minutes after cocaine treatment). It has been postulated 
that enhanced activation of ERK enables and mediates cocaine-induced 
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Figure 2: Time course of changes in phospho-(Ser/Thr)-PKA substrate protein levels in the NAcc after cocaine administration in male and female rats. 
P-(Ser/Thr)-PKA substrate protein levels are expressed as mean ± SEM values, normalized to α-tubulin levels. The basal level of p-(Ser/Thr)-PKA substrate protein 
levels in both male and female rats (A). Zero to 90 minutes after acute cocaine administration in (B) male and (C) female rats. Representative immunoblots of PKA and 
α-tubulin were indicated in lower panels. 
* Represents significant differences to saline-treated controls; p < 0.05. White bars represent levels of saline-treated groups. Shaded bars represent levels of cocaine-
treated groups. N = 4 per group.
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CREB phosphorylation in the NAcc (see review in [52]). For example, 
acute cocaine administration augments CREB phosphorylation in an 
ERK-dependent manner [53-56]. However, others have found that 
cocaine-induced ERK and CREB phosphorylation were dissociated in 
the NAcc [44]. Independent of ERK, CREB phosphorylation at the S133 
residue is regulated by PKA in addition to several other kinases [57,44]. 
Thus, as postulated by Edwards et al. [44], in some brain areas PKA 
may be the primary kinase for CREB. Unlike p-CREB [22], in this study 
p-ERK demonstrated neither a sexually dimorphic temporal pattern 

of activation nor sex differences in the magnitude of cocaine-induced 
changes. On the other hand, the greater basal and cocaine-induced 
PKA levels in females may contribute to sex differences in quantified 
pCREB phosphorylation intensity, and PKA protein levels between 
sexes may also underlie the increases of phosphorylation of CREB after 
cocaine administration. In addition to pCREB, the phosphorylation of 
S845 GluA1 subunit (pGluA1), one of PKA-mediated phosphorylation 
substrates, is important for the cocaine-mediated behavioral response 
[58]. The enhanced pGluA1 has been demonstrated to increase of 
AMPA receptor-mediated excitatory current through the augmentation 
of GluA1 membrane insertion [59-61]. It is plausible that the differential 
pGluA1 induction in the NAcc is responsible for the behavioral sex 
difference after acute cocaine administration. Further, besides PKA, 
pGluA1 is highly regulated by other phosphatases including calcineurin. 
Previously, we have shown basal and cocaine-induced sex differences 
on calcineurin protein expression in the NAcc [32]. Taken together, 
these results indicate that pGluA1 is the potential read-out for the 
cellular mechanism underlying cocaine-induced behavioral difference 
in male and female rats. Nevertheless, the pGluA1 is our ongoing 
research to further decipher the molecular pathway contributing the sex 
dimorphism of cocaine addiction.

In summary, our results suggest that females have an elevated 
D1-PKA-mediated intracellular second messenger transduction as 
compared with male rats. Thus, data presented here further elucidate 
the neurobiological basis for sex differences in cocaine’s rewarding 
effects. Our results reinforce the recurrent postulate that many aspects 
of cocaine addiction and responses are gender specific. However, 
the extent to which sex differences in the activation of D1-PKA-
mediated intracellular second messenger transduction contribute 
to females’ greater vulnerability to some aspects of cocaine remains 
to be determined. Answers to these questions are needed to further 
understand drug abuse in both males and females and to improve 
treatment in a manner that will meet the needs of both sexes.
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