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Introduction
Adenosine as an autacoid

The purine nucleoside adenosine functions as an autacoid that links 
cellular excitability to energy availability in most forms of excitable 
tissue [1-2]. Adenosine signaling meets all of the criteria of an autocrine 
mechanism: the nucleoside is produced at the synapse to regulate signal 
transduction; its production and release are highly regulated; and there 
are multiple mechanisms of reuptake, deactivation, and degradation to 
limit its action to a discrete region (Figure1).

Adenosine plays a crucial homeostatic role in regulating neural 
excitability in the central nervous system. Figure 1 shows a generic 

synapse in the CNS to summarize adenosine pharmacology and 
function. Brain adenosine concentrations normally are about 10,000 
fold lower than those of ATP (adenosine triphosphate) [3]. Extracellular 
adenosine is increased by one of two mechanisms. Adenosine’s autacoid 
function is engaged whenever the rate of ATP utilization exceeds the 
rate of synthesis. In brain neurons, this type of imbalance in the energy 
supply/demand ratio can result from excessive neural activation or 
from a shortage in brain glucose or oxygen. The nucleoside is produced 
in nanomolar concentrations as cellular work increases via S-adenosyl-
L-homocysteine (SAH) metabolism and is extruded into extracellular 
space via bidirectional transporters [4-5]. Adenosine is also produced 
by the rapid hydrolysis of extracellular ATP [6]. Adenine nucleotides 
are actively transported into and co-localized with neurotransmitter in 
synaptic vesicles. ATP is co-released with neurotransmitter from the 
presynaptic terminal at the time of synaptic activation. Carbon dioxide 
[CO2] concentrations increase in the synaptic cleft during the course 
neural excitation and cellular respiration. Extracellular pH decreases 
as a consequence. Acidification of the cleft activates membranebound 
ectonucleotidases, which convert ATP into adenosine.

Extracellular adenosine exerts its homeostatic and regulatory 
actions by interacting with four G-protein coupled stereospecific 
receptors: A1, A2A, A2B, and A3 [7,8]. A1 receptors are widely 
distributed in the brain and mediate adenosine’s inhibitory actions 
by coupling with a Gi protein that inhibits adenylyl cyclase [9]. A2 
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Abstract
The purine nucleoside adenosine has the critical autacoid function of directly linking cellular excitability to 

energy availability. The mechanism is activated whenever the rate of adenosine triphosphate (ATP) utilization 
exceeds the rate of synthesis. In CNS neurons, adenosine is produced by the rapid intracellular hydrolysis of purine 
nucleotides during neural excitation and then is extruded into extracellular space. The nucleoside is also produced 
by the extracellular hydrolysis of ATP by ectonucleotidases. Extracellular adenosine interacts with G-protein linked 
stereospecific receptors to reestablish metabolic homeostasis by exerting extraordinarily potent inhibition of neural 
excitation via a number of mechanisms. This autacoid mechanism is directly linked to the production of a depression-
like behavioral state termed conservation-withdrawal during times of physical stress or severe emotional distress. 
We review evidence here that adenosine produces a transition to conservation-withdrawal by activation of A2A 
receptors in the ventral-medial striatum.
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Figure 1: Adenosine’s autacoid function at a generic synapse in the central 
nervous system A2A receptors in the core (left panel) and shell (right panel) of 
the nucleus accumbens. Adenosine is release during neural activation to re-
establish metabolic homeostasis by interacting with stereospecific receptors.
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receptors mediate adenosine’s excitatory actions by coupling a Gs 
protein that excites adenylyl cyclase [10-11]. The A2B subtype is a low-
affinity receptor that is widely distributed in most brain regions. The 
high-affinity A2A subtype has a much more limited distribution, being 
localized primarily on enkephalinecontaining GABAergic neurons in 
the striatopallidal tract of the striatum [12-13]. Limited concentrations 
of A2A receptors also are found in the thalamus [14-16], nucleus 
tractus solitarius [17-18], and cholinergic neurons of the pontine 
reticular formation [19-20]. A3 receptors are found primarily in the 
periphery, with high concentrations in testes and mast cells, and are not 
heavily expressed in the brain. These receptors play an important role 
in regulating inflammatory reactions [21-22].

The primary mechanism by which adenosine reestablishes metabolic 
homeostasis is to produce profound and prolonged inhibition of neural 
excitation. A number of highly selective receptor agonists that mimic 
the effects of adenosine at each receptor subtype are now available. By 
contrast, caffeine and theophylline are widely used to elevate mood, 
combat fatigue, and reverse the effects of sleep. These methylxanthine 
stimulants derive their stimulant properties by acting as nonselective 
antagonists at brain adenosine receptors [1-2].

Extracellular adenosine is regulated by two mechanisms. The 
nucleoside is rapidly transported into the presynaptic terminal by a 
bidirectional transporter and converted into 5’AMP by adenosine kinase 
[4]. The reuptake transporter is blocked by nitrobenzyltheoinosine 
(NBTI). Blockade of the adenosine reuptake also is at least partially 
responsible for the anxiolytic and anticonvulsant actions of the 
benzodiazepines [23]. The second regulatory mechanism is a 
degradation pathway involving adenosine deaminase, which converts 
the nucleoside into inactive inosine that is then degraded into stable 
uric acid [24]. The degradation pathway is blocked by erythro-9-(2-
hydroxy-3-nonyl)adenine (EHNA).

Adenosine and the behavioral state of conservation-
withdrawal

This molecular regulatory mechanism has the unusual effect of 
directly mediating the transition to a depression-like state under highly 
aversive circumstances. We borrowed a term from the psychiatric 
literature (conservation-withdrawal) to characterize this reaction [25].

Engel and Schmale [26] originally coined this term in describing an 
exaggerated withdrawal response of a psychiatric patient to emotional 
challenges. The reaction unconditionally follows periods of intense 
catabolic output. The sensory unresponsiveness, cognitive dullness, 
and behavioral depression that characterize this state serve as adaptive 
mechanisms for husbanding limited resources and facilitating the 
recovery of metabolic homeostasis. The term is used more broadly in 
modern parlance to refer to enervated states associated with physical 
or psychological stress.

Conservation-withdrawal is an integral component of major 
depression and related mood disorders [26-28]. The state most closely 
corresponds to the affect-less, fatigue components of depression, rather 
than subsuming the entirety of the behavioral, cognitive, emotional, 
and motivational symptoms that comprise the disorder. It also 
represents the aspects of affective disorders that are most accurately 
modeled in animals. Conservation-withdrawal is also a key component 
of the after-reaction to physical and psychological stress. Symptoms of 
conservation-withdrawal are seen after a patient leaves the intensive 
care unit following a serious injury and are often confused with major 
depression [28-30]. These same symptoms also are the hallmark of the 

after-reaction to traumatic uncontrollable stress that has been variously 
termed learned helplessness [31], behavioral despair [32], behavioral 
depression [33], and the distress syndrome [34]. Finally, conservation-
withdrawal is a critical component of sickness behavior—the lethargy, 
hypoactivity, decreased libido, anorexia, anhedonia, and increased 
sleep that accompanies infectious disease [35-37]. This dramatic shift in 
ongoing activity, along with the induction of fever, is a highly adaptive 
strategy for fighting infection [35]. The overlap among mood disorders, 
the after-reaction to traumatic stress, recuperation from injury, and 
sickness behavior [38-40] suggests a common biological mechanism 
underlying these enervated states. We have argued that the overlap 
is well accommodated by the concept of conservation-withdrawal 
[41-44]. Here we review recent data, from Plumb et al. indicating 
that adenosine mediates the behavioral depression component of a 
conservation-withdrawal reaction via purine receptors in the ventral-
medial striatum. Previous research implicated adenosine signaling 
at A2A receptor in the production of conservation-withdrawal in a 
number of animal models of depression [45]. Most adenosine receptor 
subtypes have a wide distribution in the CNS. However, A2A receptors 
are primarily located in the striatum, with a dense population in the 
nucleus accumbens. These receptors interact with dopamine signaling 
to influence the motivational regulation of ongoing behavior. Thus, we 
hypothesized that adenosine signaling increases in the N. accumbens 
during times of extreme catabolic output and emotional distress 
to uncouple the dopamine signal from ongoing behavior. Normal 
commerce with the environment transitions to a state of conservation-
withdrawal. If so, then we should be able to prevent the transition to a 
state of conservation-withdrawal via pharmacological blockade of N. 
accumbens A2A receptors.

Rats were surgically implanted with bilateral cannula in either the 
shell or core of nucleus accumbens. Following recovery from surgery, 
we exposed rats to traumatic shock stress (S: shock) or simple apparatus 
restraint (R: restraint) in the learned helplessness procedure. This is an 
animal model of post-traumatic stress disorder (PTSD) and comorbid 
depression. The behavioral syndrome induced by this procedure was 
considered to be a prototype for conservation-withdrawal by [26]. All 
rats were tested for shuttle-escape performance, the traditional measure 
of helplessness in rats [46], 24 hours later. Rats from each pretreatment 
condition received either bilateral microinfusion of the highly selective 
A2A receptor antagonist CSC (8-(3-chlorostyryl)caffeine) (S-CSC; 
R-CSC) or vehicle (S-Veh; R-Veh) 15 minutes before testing. Test data 
from experiments in the core (left panel) and shell (right panel) or N. 
Accumbens shown in Figure 2. A profound difference in escapable 
latencies occurred in vehicle-treated shocked (S-Veh) and restrained 
(R-Veh) groups in both experiments. The difference between these 
groups defines the learned helplessness effect and is our measure of 
the behavioral depression component of a conservation-withdrawal 
reaction. Treatment of the shocked group with the A2A receptor 
antagonist CSC shortly before testing (S-CSC) completly eliminated the 
performance deficits in both experiments (Figure 2).

These data clearly implicate adenosine signaling the production 
of the learned helplessness effect and more generally a conservation-
withdrawal reaction. Adenosine is acting at A2A receptors in the 
indirect pathway in the ventral-medial striatum to produce these 
effects. Adenosine regulates the motivational influence of mesolimbic 
dopamine signaling at these receptors. Activation of A2A receptors 
functionally uncouples dopamine from its receptor, undercutting the 
motivation for ongoing behavior. Conservation-withdrawal ensues.
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Conclusion
Adenosine serves as an autacoid to regulated metabolic homeostasis 

in most forms of excitable tissue. The nucleoside is produced in 
CNS neurons during periods of excessive or unregulated excitation. 
The autacoid acts to reestablish metabolic homeostasis under these 
circumstances by exerting profound and prolonged inhibition of neural 
excitation [26] elaboration of a conservation-withdrawal reaction 
anticipates exactly this type of molecular mechanism. The sensory 
unresponsiveness, cognitive dullness, and behavioral depression 
that characterize this state were seen as unconditional reaction to 
severe emotional distress that husbanded limited energy resources 
and facilitated the recovery of metabolic homeostasis. Considerable 
evidence now suggests that activation of adenosine A2A receptors 
engenders exactly this type of reaction.
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Figure 2: Adenosine mediates escape deficits in the learned helplessness paradigm by activating A2A receptors in the core (left panel) and shell (right panel) of 
the nucleus accumbens. Rats were exposed to inescapable shock (S) or apparatus restraint (R) 24 hours before shuttle-escape testing. Rats in each pretreatment 
condition received micro infusion of the A2A receptor antagonist CSC (S-CSC & R-CSC) or vehicle (S-Veh & R-Veh) 15 minutes before escape testing (Plumb et al., 
in press).
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