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Introduction
Sphingolipids is characterized to be composed of a unique 

fatty amino alcohol, so-called long-chain base (LCB) or sphingoid 
base, most of which are linked to a fatty acid via amide bond to 
form ceramide and more complex sphingolipids following further 
glycosylation and/or phosphorylation of the ceramide backbone 
(Figure 1). Sphingolipids are conserved ubiquitously in eukaryotes 
and a few species in prokaryotes. In mammals, most sphingolipids 
contain sphingosines with transunsaturation at the Δ4 position (Figure 
1). Alternatively, 4-hydroxylated LCBs, so-called phytosphingosines, 
are observed in limited tissues in mammals [1-3] but known as 
major components in plants and fungi: in these organisms, notably, 
4-unsaturated or 4-hydroxylated LCBs are often further unsaturated
at the Δ8 position with cis/trans isomerism [4]. The Δ8 unsaturation is
generated by sphingolipidΔ8desaturase (SLD) that is conserved widely
in plants and fungi, although model yeast Saccharomyces cerevisiae
and Schizosaccharomyces pombe exceptionally lack this enzyme in
their genome. In addition, fungal SLDs seem to introduce a trans-
specific double bond, whereas plant counterparts produce both cis
and trans isomers at various ratios according to plant species as well as
to sphingolipid classes even in a certain species [5], implying that the
stereoisomerism of LCB Δ8 unsaturation has been developed, especially 
in plants, along with specific biochemical/physiological functions.
Recent studies suggested that LCB Δ8 unsaturation is not always
essential for normal growth but plays crucial roles in some situations.
Ryan et al. [6] isolated a SLD homolog from acidic soil-compatible
plant Stylosanthes hamata as an Al3+tolerance-conferring gene when
ectopically expressed in S. cerevisiae. The authors also demonstrated
that overexpression of S. hamata SLD in Arabidopsis plants increases
cis/trans ratio of tri-hydroxy species, i.e., t18:1(c8)/t18:1(t8), and
enhances Al3+ tolerance. Although the authors did not address what
kinds of sphingolipid classes as shown in Figure 1 are involved in
the Δ8 unsaturation-mediated Al3+tolerance in their published work,
accumulated evidences implicate that glucosylceramides (GlcCers) is a
possible candidate: biochemical studies have revealed that plant GlcCers 
generally prefer higher cis/transratio compared to other lipid classes,
e.g. free ceramides and glycosyl inositol phosphoceramdes (GIPCs) [7-

10]. In fact, Arabidopsis sld mutant lacking Δ8 unsaturation of LCB 
moieties showed drastic decreases in GlcCer species but neither in Cer 
nor GIPC [11]. S. cerevisiae and S. pombelack not only LCB desaturases 
but also GlcCer synthase, which might indicate evolutionary 
relationship between LCB unsaturation and GlcCer synthesis. In 
addition, loss of endogenous GlcCer synthase leads to higher sensitivity 
to Al3+ toxicity in Kluyveromyceslactis (Imai et al. unpublished data). 
These insights suggest that sphingolipid Δ8 unsaturation is closely 
associated with GlcCer synthesis, including cis isomers preferably 
in some cases, which has a crucial role in Al3+ tolerance based on 
conserved mechanisms in plants and fungi. Another physiological 
function of Δ8 unsaturation is relation to cold tolerance, which was 
first proposed from comparative analysis of LCB composition in 
GlcCer in several grapevine species showing different cold sensitivity 
[12]. A recent reverse genetic study on Arabidopsis sld1mutants 
supported implication of Δ8 unsaturation of GlcCer LCB moieties in 
cold tolerance [11]. Δ8 unsaturation-deficient sld1mutants showed not 
only lower GlcCer contents but also elevated sensitivity to cold stress. 
The authors clearly demonstrated the altered sphingolipid profiles by 
LC-MS/MS-based sphingolipidomic analysis, which has become an 
essential tool for sphingolipid studies in plants established by several 
groups [9,13,14]. For example, in the established LC-MS/MS analyses 
using a reverse-phase C18 column, sphingolipid species are separated 
according to their structural identities, i.e., 1) structures of polar 
head group; 2) carbon length, n-9 double bond and 2-hydroxylation 
of fatty acyl moieties; 3) C4-hydroxylation and Δ4/Δ8 double bonds 
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Abstract
Sphingolipid is a major lipid class ubiquitously present in eukaryotes and several species of prokaryotes. 

Recent genetic and sphingolipidomic researches have been revealing complex structures of plant sphingolipids and 
their functions in various aspects of plant biological events as major membrane components as well as signaling 
molecules. Particularly, cis/transisomeric double bond at Δ8 position of long-chain bases (LCBs) is of great interest 
due to their potential impacts on stress tolerance in plants and yeast. In addition, free LCBs and their metabolism are 
also important for intracellular signaling pathways during various environmental stresses. In this review, we introduce 
two current improvements of sphingolipidomic analyses based on liquid chromatography-tandem mass spectrometry 
(LC-MS/MS), focusing on high-throughput quantitative analysis of complex structural isomers of plant sphingolipids.
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Figure 1: Structures of plant sphingoid bases and complex sphingolipids. (A) LCB species present in plant tissues. (B) Ceramide and glycosylated complex 
sphingolipids in plants.

of LCB moieties [9]. Combined with the chromatographic separation 
and MS/MS-based detection systems, more than hundred species of 
Arabidopsis sphingolipids can be analyzed, which has contributed to 
overall profiling of metabolic alterations in free LCBs, ceramides and 
complex glycosphingolipids in several Arabidopsis mutants lacking 
sphingolipid-related genes [11,15-18]. In addition, more recent studies 
utilizing high-resolution MS by LC-coupled linear ion trap (LTQ)/
orbitrap or matrix-assisted laser decomposition/ionization-time of 
flight (MALDI-TOF) system have extended our knowledge to various 
structures of sugar chains and ceramide moieties of GIPCs present in 
a wide variety of plant species [19-21]. However, despite these recent 
developments of MS-based profiling methods for plant sphingolipids, 
they are yet insufficient to individually analyze cis/trans isomers of 
sphingolipids that are indistinguishable by MS detection and difficult 
to be separated by usual HPLC/UPLC methods. Thus, quantitative 
analysis of cis/trans isomers in the plant various sphingolipid classes 
so far requires chemical decomposition of their ceramide backbones 
into fatty acid and LCB constituents, resulting in loss of their intact 
structural information. In addition, traditional time-consuming 
chromatographic fractionations are necessary prior to the component 
analyses, which is a bottle-neck for high-throughput sphingolipidomic 
studies.

In this review, we introduce two improved LC-MS/MS methods 
with a particular focus on cis/trans isomers in plant sphingolipidome. 
One is for GlcCers, whose Δ8 isomers are of great interest in association 
with plant stress tolerance as described above. Another method is to 
analyze free LCBs after chemical derivatization, which enables high-
throughput measurement with fine separation and highly sensitive 

quantification of all the plant endogenous LCBs present as free forms 
at pmol to sub-nmol per g fresh weight (FW) orders.

Separation of cis/transisomers in glucosylceramides
As mentioned above, plant GlcCers have potential interests in 

functional impacts arisen from cis/trans stereochemistry at the Δ8 
position of LCB acyl moieties. There are many previous efforts to 
determine structural diversity of LCB species in GlcCers from various 
plant sources employing traditional chromatographic fractionations 
and LCB analysis followed by chemical degradation of the ceramide 
moieties. Recent advances in LC-MS-based (sphingo) lipidomics can 
profile intact GlcCer species without pre-fractionation and chemical 
degradation [13,22,23], although these methods were unable to separate 
cis/trans isomers. On the other hand, we recently have developed LC-
MS/MS analysis to characterize plant GlcCer species containing Δ8 
cis/trans isomers of LCB moieties, essentially described in a previous 
report [24]. Complete baseline resolution of cis/trans isomers of plant 
GlcCers was achieved by tandemly connecting two SUPERIOREX ODS 
columns (500 mm in total length): this column is characterized by high 
carbon content (24%), which is a prerequisite for efficient separation of 
cis/trans isomers of complex sphingolipids. In addition, we established 
chromatographic GlcCer isomers using a simple solvent gradient with 
only water and methanol supplemented with formic acid (Figure 2A and 
2B). The back pressure of the tandemed SUPERIOREX ODS column is 
sufficiently low (~11 MPa) even in the application of this mobile phase 
composed of methanol. This method provides detailed quantitative 
compositions of Δ8 cis/trans-isomeric dihydroxy and trihydroxy LCBs 
(mainly d18:2 and t18:1) with retaining intact structures of the ceramide 
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Figure 2: LC-MS/MS analysis of cis/transisomers of GlcCer in rice. Chromatograms obtained by MRM transition for d18:2-20h:0-Glc (A) and t18:1-24h:0-Glc 
prepared from rice(B). The former and latter peaks are cisand trans isomers, respectively. (C) Comparison of quantitative data of LCB composition in GlcCer 
species obtained from lipid extract by LC-MS/MS [17] and purified GlcCer fraction by GC-FID [18].

backbone with mono-glucosylation. In addition, since this LC-MS/MS 
method employed species-selectable MRM transitions, precursor ions 
[M+H]+ to product ions corresponding to respective LCB moieties, 
extra handlings to purify sphingolipid classes are not usually required 
prior to analyses. As reported previously, this method actuallyachieved 
quantitative profiles of GlcCer species with cis/trans isomers from rice 
and orchard grass [24]. As shown in Figure 2C, LCB compositions 
obtained by the LC-MS/MS method are largely consistent with the ones 
obtained by GC-MS analyses following traditional fractionation and 
chemical degradation of ceramide moieties [24,25]. Utilizing MS/MS 
detection also has a great advantage for high sensitivity, minimizing 
sample volume and detecting even minor species. Furthermore, 
molecular determination of GlcCer species containing various length 
of fatty acid-derived acyl chain is easily characterized by their equally-
interval elution times according to carbon numbers [24,26]. Thus, 
this method is hopeful to be extended to various GlcCer sources from 
plants and other organisms that possess species-specific composition 
of fatty acid and LCB moieties, facilitating our knowledge of cis/trans 
isomer distribution and their physiological functions in future studies.

Profiling of All LCB Species Present as Free Forms in 
Plant Tissues

In mammalian cells, sphingomyelin present in the outer leaflet 
of the plasma membrane undergoes breakdown into ceramide and 
sphingosine by sphingomyelinase and ceramidase, which triggers 
complex signaling pathways for apoptotic cell death under stress 
conditions [27,28]. Although very little is known whether free LCBs such 
as mammalian sphingosine also exist and act as a signaling molecule in 
plant cells, treatment of plant leaves with fumonisins or AAL toxin, 
known as ceramide synthase inhibitors produced by several species of 
plant-pathogenic fungi, leads to accumulation of free LCBs, mainly t18:0 
and d18:0, in plant tissues as well as mammalian cells [29]. Exogenous 
addition of free LCB species also induces phototoxic symptoms similar 
to those caused by the fungal toxins [30], indicating that disruption 
of ceramide metabolism and resultant accumulation of free LCBs lead 
to the disease symptoms. In addition, phosphorylation of free LCBs is 
involved in disease resistance accompanying hypersensitive cell death 
[31], in response to chilling [32] and in regulation of stomatal aperture 
under drought stress [33-36]. These evidences suggest that free LCBs 
and their phosphorylation play roles in signaling pathways in plants 
as well known in animals. However, detailed quantitative composition 

of plant free LCBs is unclear because of their very low amounts and 
structural complexity compared to mammalian LCBs. Recent advances 
in LC-MS/MS analysis have evidenced that LCB species with basal 
acyl modifications observed in complex ceramides are also present as 
free bases in plant extracts [11,13,15,16]. Modifications of LCBs, i.e., 
hydroxylation and desaturation, are assumed to occur on ceramides 
rather than free bases. However, the evidence that free LCBs with such 
modified species are present in Arabidopsis tissues suggest that free 
LCBs present in plant cells are released via deacylation of ceramides 
and/or complex sphingolipids by ceramidase as well as those derived 
from sphingomyelin in mammalian cells. Alternatively, plant LCB-
modifying enzymes might have activity on free LCBs. Determination 
of more detailed compositions including cis/trans isomers will progress 
our understandings on metabolic pathways and physiological functions 
of free LCBs in plants.

We recently established chemical derivatization of free LCBs with 
4-fluoro-7-nitrobenzofurazan (NBD-F, Figure 3A) [37]. Although this 
reagent is usually used for fluorescence derivatization of amino acids 
and their metabolites, we applied it to derivatization of the amino group 
of LCB following LC-MS/MS analysis. One of general advantages of 
NBD-F is high stability of its derivatives, whereas o-phthalaldehyde, 
which has been more often used for fluorescence derivatization of 
LCBs and amino acids, commonly forms unstable derivatives. We 
have confirmed NBD derivatives of free LCBs are stable even at room 
temperature during storage for more than one week [37]. In addition, 
the derivatization provides much better separation and sensitivity of 
all the plant endogenous LCBs compared to their intact free bases 
[32]. Using a gradient composed of water and mixture of methanol/
acetonitrile, three d18:1 isomers d18:1(t4), d18:1(c8) and d18:1(t8) 
were resolved sufficiently, and other cis/trans isomers, i.e., t18:1(c8)/
t18:1(t8) and d18:2(t4,c8)/d18:2(t4,t8), were also separated absolutely. 
Furthermore, high sensitivity and selectivity of the NBD derivatives 
in LC-MS/MS system enables us to analyze free LCB composition in 
plant materials without extra purifications such as chromatography or 
solid-phase extraction. Figure 3B-3D shows results from application 
of this new method to profiling free LCBs in various tissues of rice by 
the protocol published elsewhere [37]. Principal component analysis 
clearly showed that young and mature leaves are similar but other 
tissues have distinct compositions of free LCBs (Figure 3B). Total 
free LCB contents in young and mature leaves were comparable levels 
reported in Arabidopsis [14], whereas other tissues, i.e., leaf sheath, 
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inflorescence, root and callus culture accumulated up to 10-fold higher 
(Figure 3C). The accumulated species were predominantly t18:0, and 
also comparable d18:0 in callus. Unsaturated species were much lower 
but actually present in these tissues at pmol/gFW levels (Figure 3D). 
Consistent with GlcCers, free LCBs also preferred cis isomers than 
trans ones at Δ8 positions both of trihydroxy and dihydroxy species, 
suggesting that molecular mechanism producing the isomers in GlcCers 
and free LCBs are likely common in rice. In addition, leaf sheath and 
inflorescence contained much higher t18:1 species and inflorescence 
also accumulated d18:2 species. Though more efforts for the molecular 
origins and consequences of the differentially accumulated free LCB 
species in various tissues should be made, our improved method will 
contribute to further approaches for their functions in future studies.

Conclusion
In this article we reviewed current methodological improvement 

focusing on plant-specific structural isomers of sphingolipids. LC-
MS/MS-based approaches combined with the special HPLC system 
(tandemed high carbon column for GlcCer separation) or optimized 
chemical derivatization (NBD derivatization and negative ESI-
MS/MS detection for free LCB profiling) have succeeded to profile 
plant-specific sphingolipid isomers using lipid mixtures from tissues 

without class fractionations used in traditional methods. In addition, 
higher sensitivity of the new methods can reduce amounts of analytes 
required for measurements. Taken together, these methods achieved 
high-throughput profiling of isomers of GlcCers and free LCBs, which 
effectively facilitate studies requiring numerous numbers of analytes, 
such as screening mutant/transgenic plants and for assessment of 
effects of various stress treatments.
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