

Editorial Open Access

Airborne and Waterborne Zoonoses: Pathways, Public Health Challenges, and Prevention Strategies

Priyanka Sharma*

Department of Microbiology and Public Health, Institute of Tropical Medicine and Zoonotic Research, India

Abstract

Zoonotic diseases those transmitted between animals and humans continue to be a critical global health concern. Among these, airborne and waterborne zoonoses pose unique challenges due to their rapid transmission and the widespread nature of environmental vectors. This article explores the various pathogens responsible for airborne and waterborne zoonotic diseases, the mechanisms of transmission, the role of environmental reservoirs, and the impact on both human and animal health. Emphasis is placed on diseases such as leptospirosis, cryptosporidiosis, brucellosis, avian influenza, Q fever, and others, which are transmitted via inhalation of aerosolized particles or contaminated water. The article also discusses surveillance mechanisms, the One Health approach, and interdisciplinary strategies required to curb the spread of these diseases in a rapidly urbanizing and climate-sensitive world.

Keywords: Zoonotic diseases; Airborne transmission; Waterborne pathogens; Leptospirosis; Avian influenza; Q fever; One health; Public health surveillance; Environmental contamination; Zoonoses prevention.

Introduction

Zoonoses are infectious diseases that are transmitted between animals and humans [1]. With over 60% of emerging infectious diseases in humans having zoonotic origins, understanding their transmission routes is critical [2]. Airborne and waterborne zoonoses are of particular concern due to their potential for mass transmission via environmental vectors like air, dust, aerosols, and contaminated water bodies [3]. These pathogens may originate in wildlife, livestock, or domestic animals, often making their way into human systems through occupational, domestic, or recreational exposures [4]. Globalization, climate change, deforestation, intensive farming, and urban expansion are key factors driving the emergence and reemergence of such zoonoses. These diseases not only affect human health but also have significant economic and ecological impacts [5]. Therefore, studying the modes of airborne and waterborne zoonotic transmission is essential for effective surveillance, policy formulation, and implementation of preventive public health measures [6]. Zoonotic diseases, or zoonoses, are infections that spread between animals and humans, often posing significant threats to global health [7]. Among the various transmission routes, airborne and waterborne pathways are particularly concerning due to their rapid and sometimes uncontrollable spread [8]. Airborne zoonoses, such as avian influenza, can travel through respiratory droplets, while waterborne zoonoses like leptospirosis and cryptosporidiosis often emerge from contaminated water sources. Understanding these transmission mechanisms is crucial for identifying public health vulnerabilities and implementing effective prevention strategies.

Airborne zoonoses: transmission and examples

Airborne zoonoses are transmitted through aerosols, respiratory droplets, or dust particles contaminated with animal waste or secretions. These infections are often difficult to control due to the ease of spread in closed environments or during occupational exposure. Transmitted primarily through inhalation of dust contaminated by infected animal feces, urine, milk, or birthing fluids, particularly from cattle, sheep, and goats. It can cause acute febrile illness, pneumonia, or

chronic endocarditis in humans. Originating in poultry, transmission to humans can occur via aerosols or close contact with infected birds. Human cases often lead to severe respiratory illness and high mortality rates.

Rodents are natural hosts. Human infection occurs when aerosolized virus particles from rodent urine or droppings are inhaled. Caused by inhalation of dried secretions from infected birds, this disease can cause severe respiratory infections in humans.

Waterborne zoonoses are contracted through direct or indirect ingestion of water contaminated with pathogenic microorganisms from animals. Poor sanitation, open defecation, and lack of water treatment infrastructure exacerbate the spread. A bacterial infection caused by Leptospira spp., typically spread via water contaminated with urine from infected rodents, livestock, or pets. The disease can lead to renal failure, liver damage, or even death if untreated.

A protozoan parasite spread through ingestion of contaminated drinking or recreational water. It causes severe diarrhea and is particularly dangerous for immunocompromised individuals.

An intestinal infection contracted from ingesting water contaminated with feces of infected animals or humans.

These bacterial infections are often foodborne but may also spread through contaminated surface water, especially in agricultural runoffs or during flooding.

Public health implications

*Corresponding author: Dr. Priyanka Sharma, Department of Microbiology and Public Health, Institute of Tropical Medicine and Zoonotic Research, India, E-mail: Priyanka.sh@gmail.com

Received: 01-Mar-2025, Manuscript No: awbd-25-167007, Editor assigned: 03-Mar-2025, Pre-QC No: awbd-25-167007 (PQ), Reviewed: 17-Mar-2025, QC No: awbd-25-167007, Revised: 24-Mar-2025, Manuscript No: awbd-25-167007 (R), Published: 31-Mar-2025, DOI: 10.4172/2167-7719.1000290

Citation: Priyanka S (2025) Airborne and Waterborne Zoonoses: Pathways, Public Health Challenges, and Prevention Strategies. Air Water Borne Dis 14: 290.

Copyright: © 2025 Priyanka S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Airborne and waterborne zoonoses present significant challenges to public health due to:

Rapid and Mass Transmission: Especially in urban settings and during natural disasters.

Occupational Risk: High exposure among farmers, veterinarians, slaughterhouse workers, and water sanitation personnel.

Diagnostic Challenges: Symptoms often mimic common infections, leading to underdiagnosis.

Economic Burden: Livestock losses, healthcare costs, and trade limitations.

Integration of human, animal, and environmental health systems for collaborative prevention and response mechanisms. Investing in laboratory capacity, real-time monitoring, and zoonotic disease reporting networks is essential. Raising awareness about handwashing, safe water practices, and animal handling safety.

Vaccinating livestock, culling infected animals, and monitoring wildlife reservoirs.

Ensuring safe drinking water, sanitation facilities, and regulated food processing industries.

Conclusion

Airborne and waterborne zoonoses represent a dynamic threat at the intersection of animal and human ecosystems. Their control requires a multifaceted, intersectoral response rooted in scientific research, community engagement, and global cooperation. In a changing world marked by ecological disruption and increased animal-human interaction, proactive surveillance, risk communication, and environmental hygiene are the pillars of defense against zoonotic disease outbreaks. As we continue to face new health challenges, the emphasis on One Health and integrated disease management will remain the cornerstone of zoonoses prevention.

Airborne and waterborne zoonoses continue to challenge public health systems worldwide due to their complex transmission dynamics and potential for widespread outbreaks. Effective management requires a multifaceted approach, combining surveillance, public awareness, environmental sanitation, and cross-sector collaboration under a One Health framework. By addressing both environmental and human behavioral factors, we can reduce the risk of zoonotic disease emergence and improve global resilience against future public health threats.

References

- Yagupsky P, Peled N, Riesenberg K, Banai M (2000) Exposure of hospital personnel to Brucella melitensis and occurrence of laboratory-acquired disease in an endemic area. Scand J Infect Dis 32: 31-35.
- Baldwin CL, Parent M (2002) Fundamentals of host immune response against Brucella abortus: what the mouse model hasrevealed about control of infection. Veterinary Microbiology 90: 367-382.
- Ko J, Splitter GA (2003) Molecular host-pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans. Clinical Microbiology Reviews 16: 65-78.
- Yagupsky P, Peled N, Press J, Abu-Rashid M, Abramson O (1997) Rapid detection of Brucella melitensis from blood cultures by a commercial system. Eur J Clin Microbiol Infect Dis 16: 605-607.
- Shasha B, Lang R, Rubinstein E (1992) Therapy of experimental murine brucellosis with streptomycin, cotrimoxazole, ciprofloxacin, ofloxacin, pefloxacin, doxycycline, and rifampin. Antimicrobial Agents and Chemotherapy 36: 973-976.
- Prior S, Gander B, Irache J M, Gamazo C (2005) Gentamicin loaded microspheres for treatment of experimental Brucella abortus infection in mice. Journal of Antimicrobial Chemotherapy 55: 1032-1036.
- Izadjoo MJ, Mense MG, Bhattacharjee AK, Hadfield TL, Crawford RM, et al. (2008) A study on the use of male animal models for developing a live vaccine for brucellosis. Transboundary and Emerging Diseases 55: 145-151.
- Shemesh AA, Yagupsky P (2011) Limitations of the standard agglutination test for detecting patients with Brucella melitensis bacteremia. Vector Borne Zoonotic Dis 11: 1599-1601.

Air Water Borne Dis, an open access journal ISSN: 2167-7719