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 Abstract
Aluminum is a ubiquitous neurotoxin highly enriched in our biosphere, and has been implicated in the etiology 

and pathology of multiple neurological diseases that involve neural degeneration, behavioral impairment and cognitive 
decline. Over the last 36 years our group has analyzed the aluminum content of the temporal lobe neocortex of 511 
high quality human brain samples from 18 diverse neurological and neurodegenerative disorders, including 2 groups of 
age-matched controls. Brodmann anatomical areas including the inferior, medial and superior temporal gyrus (A20-A22) 
were selected for analysis: (i) because of their essential functions in massive neural information processing operations 
including cognition and memory formation; and (ii) because subareas of these anatomical regions are unique to humans 
and are amongst the earliest areas affected by progressive neurodegenerative disorders such as Alzheimer’s disease 
(AD). We utilized the analytical technique of (i) Zeeman-type electrothermal atomic absorption spectrophotometry 
(ETAAS) combined with (ii) an experimental multi-elemental analysis using the advanced photon source (APS) ultra-bright 
storage ring-generated hard X-ray beam (7 GeV) and fluorescence raster scanning (XRFR) spectroscopy device at the 
Argonne National Laboratory, US Department of Energy, University of Chicago IL, USA. These data represent the largest 
study of aluminum concentration in the brains of human neurological and neurodegenerative disease ever undertaken. 
Neurological diseases examined were AD (N=186), ataxia Friedreich's type (AFT; N=6), amyotrophic lateral sclerosis 
(ALS; N=16), autism spectrum disorder (ASD; N=26), dialysis dementia syndrome (DDS; N=27), Down’s syndrome (DS; 
trisomy21; N=24), Huntington’s chorea (HC; N=15), multiple infarct dementia (MID; N=19), multiple sclerosis (MS; N=23), 
Parkinson’s disease (PD; N=27), prion disease (PrD; N=11) including bovine spongiform encephalopathy (BSE; ‘mad cow 
disease’), Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Sheinker syndrome (GSS), progressive multifocal 
leukoencephalopathy (PML; N=11), progressive supranuclear palsy (PSP; N=24), schizophrenia (SCZ; N=21), a young 
control group (YCG; N=22) and an aged control group (ACG; N=53). Amongst these 18 common neurological conditions 
and controls we report a statistically significant trend for aluminum to be increased only in AD, DS and DDS compared 
to age- and gender-matched brains from the same anatomical region. The results continue to suggest that aluminum’s 
association with AD, DDS and DS brain tissues may contribute to the neuropathology of these neurological diseases but 
appear not to be a significant factor in other common disorders of the human central nervous system (CNS).

Keywords: Aluminum; Alzheimer’s disease (AD); Dialysis dementia 
syndrome (DDS); Downs syndrome (DS; Trisomy 21); Electrothermal 
atomic absorption spectrophotometry (ETAAS); neuropathology; X-ray 
fluorescence raster (XRFR) scanning spectroscopy

Introduction 
Aluminum is an environmentally abundant and proinflammatory, 

trivalent metal neurotoxin that has been implicated in the onset, 
development and propagation of neurodegeneration and cognitive 
decline in several human neurological disorders including AD, DDS and 
DS (trisomy 21). As such, aluminum accumulation within the central 
nervous system (CNS) over the course of aging appears to reach a critical 
threshold in which sufficient amounts of this neurotoxin accumulates 
to induce proinflammatory signaling, dysregulation of gene expression 
(particularly in neurons), irreversible brain cell damage, and functional 
decline resulting in deficits in cognition, memory and behavior [1-15]. 
More specifically, aluminum, an extremely high charge density cation 
(Z2/r=18), appears to induce a general neurotoxicity towards both 
intracellular and extracellular signaling functions in the CNS wherever 
phosphate or polyphosphate is encountered, such as in the phosphate-

rich genetic material that includes RNA, DNA, free nucleotides such as 
adenosine triphosphate (ATP), phosphoproteins and single stranded 
nucleic acids [3,16-20]. More precisely, bioavailable aluminum appears 
to be responsible for a significant reactive oxygen species (ROS) 
mediated genotoxicity, that is, toxicity toward the genetic material of the 
cell and molecular-genetic operations that include transcription, intra 
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and extranuclear genetic signaling, epigenetics and gene-expression 
that has been extensively described by various laboratories [3,7,9,10,21-
35]. Much of this genotoxicity appears to be mediated through (i) 
upregulation of the heterodimeric, proinflammatory transcription 
factor NF-kB (p50/p65) complex; (ii) significant increases in NF-kB-
sensitive microRNA (miRNA) and messenger RNA (mRNA) linked 
signaling circuits; and (iii) deficits in gene-expression. These have been 
shown to drive multiple aspects of inflammatory neurodegeneration 
including amyloidogenesis, altered innate-immune responses, deficits 
in neurotrophic signaling and synaptogenesis, and the inability to 
clear self-aggregating waste material from the brain cell cytoplasm and 
parenchyma [5,6,10,12,29-38].   

 As part of our major research interests on environmental 
biochemistry and neurotoxicity of biosphere abundant metallotoxins, 
aluminum is the 3rd most abundant element (after oxygen and silicon) 
and the most abundant metal making up about ~8.1% (w/v) of the 
entire earth’s crust the determination of neurotoxic metals including 
aluminum in human tissues has been an ongoing operation in our 
laboratories for almost four decades. It is important to point out that 
even though aluminum may be more abundant in one neurological disease 
or tissue fraction than another, it is further important to demonstrate 
that aluminum at physiologically realistic concentrations is capable of 
contributing to an aluminum-driven neuropathology that is relevant to 
that particular CNS disease [6,14,22,39,40-42]. For example, ambient 
aluminum sulfate at low nanomolar concentrations, as might be 
encountered within the genetic material of the aging CNS, has the ability 
to emulate the upregulated levels of the same microRNAs (miRNAs) as 
are apparent in AD, DS, some aged human brain tissue samples and in 
several transgenic murine models of these neurodegenerative diseases 
[30,31,35,42,43]. Interestingly, the synergism of aluminum with other 
potentially neurotoxic metals, such as environmental iron and mercury, 
in mediating and enhancing incapacitating neurotoxic effects within 
the human CNS are just beginning to become understood [27,41]. 

Methods 
 At autopsy, human brain temporal lobe (Brodmann areas A20-A22) 

tissues were collected from deceased patients with a postmortem 
interval (PMI; death-to-brain-freezing at 81oC) ranging from 1.2 to 5.0 

hr. Patient clinical, medial and familial history, physical examination, 
clinical dementia rating (CDR), pneumoencephalogram and/or 
other neuropathological determinations were compatible with the 
diagnosis of each respective neurological disorder. To avoid gender-
based neurochemical or neurophysiological bias only female brains 
were utilized in this study with the exception of the ASD group which 
consisted of 7 females and 19 males. Extensive post-mortem examination 
revealing brain weight, brain atrophy, neurofibrillary degeneration, 
senile plaques, evidence of microbleeds and stroke, hippocampal 
pyramidal degeneration and related clinical parameters were consistent 
with a diagnosis of each neurological disorder. Because of a massive 
data loss 23-31 August 2005 due to hurricane Katrina only the mean 
and standard deviation for the age of each neurological group studied 
was available. Great care was taken in the removal and processing of 
tissues and workers in autopsy suites were supervised to minimize 
possible aluminum contamination. For aluminum determinations brain 
tissues were typically handled and processed in a negative pressure clean 
room area used for the manipulation of extremely labile single-stranded 
RNA molecules. Further details of the analytical methods for aluminum 
samples are given in (Supplementary file 1). 

Results
Using ETAAS as little as 0.1 ug/gm (dry weight) aluminum can 

be reliably detected, however, the ETAAS method measures the total 
amount of aluminum, and the possibility that this element is bound in 
a nontoxic or non-specific form or in a physiological situation that has 
no neurotoxic effect cannot be totally excluded at this time. Although 
a considerable amount of investigational work has been done by this 
laboratory on the genotoxic effects of aluminum on gene expression, it 
will be necessary to further identify and characterize the tissue binding 
sites in AD, DDS and DS to further establish the role of aluminum in 
the pathogenesis of each disease. For example, it has been shown that 
in AD, aluminum may target certain ‘open’ or ‘euchromatic’ regions of 
the brain’s genetic material and hence be compartmentalized to specific 
chromatin structures such as the inter-nucleosomal ‘histone H1’ linker 
region, i.e. in highly compartmentalized fractions of the nuclei of 
entire brain cells [1,2,7,9,40,44]. In addition, not all of the pathological 
changes in AD, DDS, DS and the other neurological conditions studied 

Abbreviation Neurological disease Al, ug/g dry weight    
  N Mean S.D. Range p,ANOVA NS or S Mean age (yr)+/- S.D.

AD Alzheimers disease 186 8.08 2.91 1.9-16.8 <0.0001 S 73.1 +/- 15.6
AFT ataxia-Friedreichs type 6 1.15 0.18 0.9-1.4 1 NS 69.3 +/- 11.5
ALS amyotrophic lateral sclerosis 16 1.22 0.14 0.95-1.4 1 NS 67.5 +/- 10.1
ASD autism spectrum disorder 26 1.22 0.2 0.9-1.6 1 NS 11.1 +/- 6.4
DDS dialysis dementia syndrome 27 3.69 1.14 1.2-6.2 <0.0001 S 72.4 +/- 13.2
DS Down’s syndrome (trisomy 21) 24 4.53 1.18 2.0-7.1 <0.0001 S 75.3 +/- 9.3
HC Huntington’s chorea 15 1.69 0.9 0.3-3.1 1 NS 70.4 +/- 14.3
MID multiple infarct dementia 19 1.35 0.31 1.0-2.1 1 NS 70.4 +/- 10.3
MS multiple sclerosis 23 1.37 0.43 0.7-2.1 1 NS 71.5 +/- 9.3
PD Parkinson’s disease 27 1.77 0.76 0.4-3.2 0.9998 NS 72.5 +/- 10.1
PrD prion disease (BSE, CJD, GSS) 11 1.31 0.34 0.9-2.1 1 NS 74.2 +/- 9.8
PML progressive multifocal leukoencephalopathy 11 1.5 0.56 0.7-2.3 1 NS 73.1 +/- 16.3
PSP progressive supranuclear palsy 24 1.45 0.4 0.5-2.3 1 NS 71.9 +/- 14.4
SCZ schizophrenia 21 1.74 0.56 0.7-2.7 1 NS 69.3 +/- 11.6
YCG young control group 22 1.2 1.19 0.9-1.5   10.2 +/- 6.1
ACG aged control group 53 1.34 0.28 0.16-1.8   71.4 +/- 9.3

N=number of individual brains examined; SD: Standard Deviation; range=lowest to highest aluminum signal quantified; S: significant; NS: Not Significant. 
Table 1: Statistical analysis of neurological diseases. 
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here can be readily explained by these findings and our study does 
not exclude the possibility that other etiological factors including 
other neurotoxic processes, molecules or environmental metals may 
additionally contribute to the pathogenic mechanism of progressive 
inflammatory neurodegeneration (see also Discussion section, below). 

Results for the aluminum content of temporal lobe tissues from 16 
neurological disorders, a young control group (YCG) and an aged control 
group (ACG) are presented in (Table 1); raw data for each neurological 
disorder is presented in (Supplementary file 2). The neurological 
disorders AFT, ALS, ASD, HC, MID, MS, PD, PrD, PML, PSP and SCZ, 
while all representing neurological disorders with a neuroinflammatory 
and/or neurodegenerative component that include progressive memory, 
behavioral or cognitive deficits did not show any significant increase in 
aluminum in the medial superior temporal lobes (Brodmann A20-A22) 
when compared to age-matched controls (Table 1). We note that the 
only neurological conditions exhibiting increased aluminum versus age- 
and gender-matched healthy, neurologically normal controls was AD 
to a mean of ~8.08-fold over these controls (N=186; range 1.9-16.8 ug 
aluminum/gm tissue); DS (trisomy 21) to a mean of ~4.53-fold over age- 
and gender-matched controls (N=24; 2.0-7.1 ug aluminum/gm tissue); 
and DDS to a mean of ~3.69-fold over age and gender-matched controls 
(N=27; range 1.2-6.2 ug aluminum/gm tissue). These values are within 
the range of previously determined tissue aluminum studies using ETAAS 
[25,45]. Of all brains studied the highest aluminum concentrations 
were consistently found in AD tissues. Interestingly all DS patients are 
known to expire from AD-type pathological change in their brains and 
at post-mortem examination all DS patients exhibit some form of AD-
type alterations in the brain parenchyma and/or the extraneuronal or 
extracellular space. These include, prominently, the appearance of highly 
proinflammatory lesions including amyloid beta (Aβ) peptide enriched 
senile plaque deposits and neurofibrillary tangles [15,45-47]. The loss 
of normal kidney function in aged, long-term DDS patients exposes the 
entire circulatory system, including the cerebrovascular circulation, and 
potentially CNS compartments, to very large amounts of aluminum, 
usually in the form of aluminum containing compounds in the dialysis 
fluids resulting in aluminum intoxication, marked by significant motor, 
speech and cognitive disturbances, seizures and progressive dementia 
[18,19,25,48,49]. 

  The latest US federal government compiled medical and scientific 
data, including updated disease information with demographic 
statistics on facts concerning AD, AFT, ALS, ASD, DDS, DS, HC, MID, 
PD, PML, PSP, SCZ and PrP [that includes BSE (mad cow disease), 
CJD and GSS], provided by the National Institutes of Health, Bethesda 
MD, USA and other resources and constantly updated are provided in 
(Supplementary file 3). 

   Results employing other novel and experimental analytical 
techniques for aluminum quantitation and other trace metal analysis 
using X-ray fluorescence raster scanning (XRFR) spectroscopy 
to advance and improve the analysis and resolution of aluminum 
abundance in neurobiological tissues is presented in (Supplementary 
file 4) [50,unpublished data]. While still in development, using the 
APS XRFR spectroscopy device, data were acquired using an energy-
dispersive germanium detector capable of detecting Al, P, S, Cl, K, 
Ca, Fe and Zn nondestructively in complex biological samples. We 
have been able to detect a significantly larger signal for aluminum 
abundance in AD temporal lobe neocortex ranging from 6-9-fold over 
age and gender-matched healthy controls and the results are highly 
significant (p<0.0001, ANOVA). In this ongoing project our long term 
goal is to advance our ability to analyze and quantify aluminum and 

other metal abundance, speciation and complexity in extremely small 
samples of pathological neurobiological tissues compared to age-and 
gender-matched controls (Supplementary file 4).

Discussion 
 The molecular, cellular, nuclear, genetic, epigenetic and systemic 

mechanisms by which aluminum exerts selective neurotoxicity 
and genotoxicity remains incompletely understood. Many different 
pathogenic signaling pathways mediated by aluminum toxicity have 
been described by our group and others [3,5,10,11,19,27,31,38,47]. 
One major aluminum-induced pathogenic signaling pathway driving 
aluminum genotoxicity with relevance to many different human diseases 
has been discovered in which: (i) aluminum crosses aging, diseased or 
dysfunctional biophysical barriers including the gastrointestinal (GI) 
and blood-brain barriers (BBB); (ii) accesses aluminum-sensitive 
compartments within the CNS and supports the generation of reactive 
oxygen species (ROS) and/or reactive nitrogen species (RNS); (iii) 
these highly reactive species in turn strongly induces phosphorylation 
of the NF-kB inhibitor (IkB) thereby leading to the activation of the 
heterotypic NF-kB (p50/p65) dimer; (iv) NF-kB-sensitive microRNAs 
(such as miRNA-34a and miRNA-146a) are significantly induced (due 
to the presence of multiple NF-kB-DNA-binding sites in the miRNA-
34a and miRNA-146a gene promoters); and (v) these NF-kB-sensitive 
miRNAs next interact with the 3’-untranslated region (3’-UTR) of target 
messenger RNAs (mRNAs) thereby leading to their degradation and 
decreasing the expression of that target mRNA [2,13,15,30-32,36,51]. 

 Hence, a highly select and pathogenic group of upregulated, 
NF-kB-sensitive, miRNAs ultimately causes, for example, the down-
regulation of several key brain essential mRNAs including those 
involved in synaptogenesis, in the regulation of innate immunity, 
inflammatory and neurotrophic signaling and in amyloidogenesis 
[15,42,43]. Interestingly, it has recently been shown that human 
microbiome-derived lipopolysaccharide (LPS), and more specifically 
the LPS of the Gram negative obligate anaerobe Bacteroides fragilis 
(BFLPS), strongly adsorbs aluminum, and is highly capable of 
inducing both ROS, RNS and NF-kB and in triggering inflammatory 
neurodegeneration in human brain cells in primary culture. This 
therefore establishes for the first time a link between potent aluminum 
containing, proinflammatory neurotoxins actively secreted by the GI 
tract microbiome and inflammatory signaling within human brain cells 
[52,53, unpublished observations]. 

  In addition to ETAAS and XRFR, other experimental, investigative 
and analytical methodologies for quantifying the abundance of 
aluminum in CNS tissues include high-field 19.6T 27Al solid-state 
MAS NMR technologies which are designed to improve the detection 
and localization of aluminum in neurobiological tissue samples [54]. 
These tissues include those of the normally aging human CNS, those 
with the neurological diseases referred to in this report, transgenic 
murine models of these same neurological disorders, and the use of 
primary human neuronal-glial (HNG) cell models co-cultured in 
vitro [27,52,54, unpublished 2018). Related to aluminum localization 
and quantitative analytical work, other techniques such as ‘molecular 
shuttle chelation’, involving the use of ascorbate, desferrioxamine 
and Feralex-G in combination to remove nuclear-bound aluminum 
have been advanced, although once bound, aluminum is particularly 
refractory to chelation-based removal, especially in the phosphate-
enriched environment of euchromatin and the transcriptionally 
active microcompartments of human brain cell nuclei [12,14,17,35]. 
Interestingly, the only clinical trial specifically designed to remove 
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aluminum from the brains of live control and AD patients (N=48) 
using the trivalent metal chelator desferrioxamine (DF) resulted in a 
halving of the rate of neurodegeneration and cognitive decline in the 
DF-treated group [55]. 

Lastly, these like all similar analytical studies on metallotoxins in 
neurological disease have limitations. We focused on aluminum content 
in females largely due to brain tissue sample availability, but preliminary 
data for example in AD, show that males with AD exhibit the same 
trend for aluminum accumulation in the temporal lobe region of the 
brain versus controls with no neurological disease. Small sampling sizes 
from extremely rare neurological disorders such as prion disease (BSE; 
‘mad cow disease’, CJD and GSS) and ataxia Friedreichs type (AFT) 
and others are problematic as there is variability in neurotoxic metal 
concentrations amongst individuals, and small sample size and skewed 
power analysis could induce statistically nonsignificant results. We 
would like to reiterate that if aluminum, or in fact any metal, is enriched 
in tissues diagnosed with a certain disease, while certainly suggestive, 
should not be enough evidence to link that metal to any disease. 
Rigorous and reproducible experimentation with appropriate controls 
are required to show that aluminum, or in fact any other neurotoxic 
metal, at the concentrations found under physiological conditions 
in vivo are capable of causing a focused disruption of a neurological 
process, and preferably some disturbance that has a direct relevance 
to the neurological disease process itself. For example, it has been 
shown that the extremely high positive charge density aluminum may 
specifically target certain accessible, polyphosphate-rich and highly 
electronegative euchromatic regions of brain cell nuclei to disrupt gene 
expression. Because aluminum appears to be compartmentalized to 
specific ‘open’ and ‘accessible’ chromatin structures its concentration 
may be actually highly localized, and at a higher concentration, than 
those found on average and at random determinations throughout the 
entire tissue sample under study [31,32,40].
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