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Abstract

Alzheimer’s disease (AD) is one of the most common causes for the development of Dementia in the elderly. In
past two decades there has been abundant research in pathogenesis of AD and possible prevention and treatment.
Research evidences have suggested the major role of oxidative stress in the pathogenesis of AD. Sources of this
stress are disruption of homeostasis of metals, mitochondrial dysfunction, genetic mutations, β Amyloid
accumulation, hyperphosphorylation of tau and inflammation. Oxidative damage found in AD occurs as a result of
advanced glycation end products, nitration, lipid peroxidation adduction products, carbonyl modified neurofilament
protein and free carbonyls. All the products, discussed above have been considered as blood biomarkers for early
diagnosis of AD. Various antioxidant therapies have been identified and studied for prevention and possible
treatment of AD, based on role of oxidative stress in pathogenesis of AD. In this review we briefly discuss about the
sources of oxidative stress and pathogenesis of AD, along with various newer and older antioxidant therapeutic
options.

Keywords: Alzheimer’s disease; Oxidative stress; Blood biomarkers;
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Introduction
Alzheimer’s disease (AD) is the most common neurodegenerative

disease which causes dementia in the elderly, characterized by the
gradual deterioration of the memory and other cognitive functions
and it passes through various stages and finally results in complete
incapacity and death of the patient within 3 to 9 years [1]. Increasing
age is a major risk factor for sporadic forms of AD. Population of the
elderly is increasing worldwide and therefore the prevalence of AD.
AD has become one of the leading causes of disability and death
among the elderly [2-5]. There has been abundant research in AD
disease in the past few decades, but the exact cause and pathogenesis of
AD are not completely understood, and right now, we do not have
effective treatment options for the disease. Etiology of the AD is
multifactorial and quite a mysterious phenomenon. Research in the
genetics and molecular biology has explained some of the underlying
mechanisms for the pathologies found in the AD. Research in the
genetics has identified the genes involved in the AD.

Gene Chromosom
e

AD category Age of onset

Presenilin I 14 Early onset familial AD 25-60 years

APP 21 Early onset familial AD 40-64 years

Presenilin II 1 Early onset familial AD 45-84 years

APOE e4 19 Early to late onset familial
and sporadic AD

>50 years

Table1: Genes involved in Alzheimer’s disease [6-9]

Apart from these, α2-macrogobulin gene located on chromosome
12 [10] and other unidentified genes also determine the susceptibility
in late onset forms and sporadic cases.

Amyloid hypothesis is another causative mechanism in AD.
Principle hallmark of the AD neuropathology are: Senile plaques
(typically composed of amyloid protein) and neurofibrillary tangle
(mainly composed of tau protein). Both of these are the result of
amyloidogenesis and specifically, formation and deposition of a long
β-Amyloid peptide (Aβ) of 42 or 43 amino acids (Aβ42). Various
mutations have also been described on the APP (Amyloid precursor
protein); PS I (Presenilin-I) or PS II (Presenilin-II) genes all causes
increase production of this long β-Amyloid peptide [11]. In addition
to this, cytokines, transforming growth factor β1, interleukin1 and
various complement factors are also involved in the process of
amyloidogenesis [12,13].

Amyloid hypothesis explains the neuropathology to some extent
but it does not explain the relation between amyloidogenesis and
development of neurofibrillary tangle. There is a question about how
this neurodegeneration and neuronal death occur? It seems that free
radicals probably responsible for these processes. The free radical
hypothesis of aging was proposed years ago, says that age related
accumulation of the reactive oxygen species (ROS) results in damage
to major components of the cell: nucleus, mitochondrial DNA,
membranes, and cytoplasmic proteins. Most neurodegenerative
diseases including AD are the result of imbalance between free radical
generation and free radical scavengers [14-16]. The human Brain
consumes large amount of oxygen compared other organs, like it
weighs only 2% of the body weight but consumes about 20% oxygen
supplied by the respiratory system [17]. This high energy consumption
of the brain suggests that it is more susceptible to oxidative stress.
Because neuron is the basic functional unit of the brain, it has higher
metabolic rate, and therefore more vulnerable to oxidative damage
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[18]. Other reasons for their vulnerability are; low content of
glutathione, a natural antioxidant [19] and high amount of
polyunsaturated fatty acids in their membranes [20]. Age is the key
risk factor for the AD because free radical injury to the neurons can
gradually accumulate over the years [21]. Such general findings
suggest that free radical injury is associated with many age related
pathologies including AD and other neurodegenerative diseases [22].

Oxidative damage and sources of oxidative stress in AD
Under normal physiological conditions, there is balance between

free radicals and antioxidants, which is disturbed in pathological
conditions. Oxidative damage occurs when the reactive oxygen species
are in excess of cellular antioxidant defences. Oxidative damage found
in AD occurs as a result of advanced glycation end products [23-26],
nitration [27,28], lipid peroxidation adduction products [29,30],
carbonyl modified neurofilament protein and free carbonyls [31,32].

Research in molecular biology has suggested that mitochondrial
dysfunction [33-36], metal accumulation [33,37,38],
hyperphosphorylated Tau [39,40], inflammation[41,42], β-Amyloid
(Aβ) accumulation [33,35,36] are responsible for the oxidative stress
and damage. Oxidative stress occurs because the components of the
antioxidant system like superoxide dismutase (SOD) in mitochondria
and cytosol, glutathione peroxidase, and catalase are deficient or
destroyed. As a result the clearance of the free radicals reduces and
oxidative stress arises [43-45]. Apart from this oxidative stress also
contributes to Aβ accumulation and tau hyperphosphorylation, which
suggests that it plays an important role in pathogenesis of AD
[33,36,46] and it can be biomarker and possible treatment target for
AD [46-48].

Lipid oxidation
Neurons are very rich in phospholipids, and are very important for

the process of neurotransmission, neuronal interactions and cognition.
These phospholipids have high proportions of PUFA, especially
docosahexaenoic acid and arachidonic acid. It has been found that
when free radical production increases, PUFA content of the brain
gradually decreases [49,50]. In addition, the products of lipid
peroxidation are very unstable and automatically converted into
malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), ketones,
epoxides, and hydrocarbons in the presence of iron [49]. Many studies
have confirmed that patients with AD and mild cognitive impairment
have increased levels of MDA and 4-HNE in their brains [51-53].
Isoprostanes (F2-IsoPs) are produced from arachidonic acid via
esterification. Levels of F2-IsoPs and F4-IsoPs have been found to be
increased in cerebrospinal fluid (CSF) in patients with AD and mild
cognitive impairment (MCI) [54-57].

Protein oxidation
As a result of oxidative damage proteins are converted to protein

carbonyls, levels of which are high in brains of AD patients [53].
Tyrosine is converted to 3-nitrotyrosine and dityrosine after reaction
with reactive oxygen and nitrogen species. The level of 3-nitrotyrosine
residue in the CSF is negatively correlated with mental status
examination score [58,59]. One study has shown that levels of total
protein nitration in the inferior parietal lobule and in the
hippocampus in the patients with MCI are much higher than those in
healthy control subjects, which shows that protein nitration starts early
in the AD pathology.

Nucleic acid oxidation
8-hydroxydeoxyguanosine (8-OHdG) is formed due to DNA

oxidation. The level of 8-OHdG in mitochondrial DNA in the parietal
cortex of the AD patients is increased significantly as compared to the
controls [60]. The level of 8-OHG is found to be increased a decade
before the appearance of neurofibrillary tangles (NFTs) and Aβ
plaques in the brain of AD patients. DNA oxidation can also be
measured by DNA strand breakage. One study has reported that the
level of DNA strand breakage in cerebral cortex of AD patients is twice
as compared controls [61].

All the products, discussed above have been considered as blood
biomarkers for early diagnosis of AD [49]. It requires further research
to establish their efficacy as early biomarkers.

The Role of Metals in AD
From the beginning, transition metals like copper, iron, aluminum,

zinc etc. are the target for the research in AD pathology. These metals
play critical role in the production of the free radicals. Areas of brain
(hippocampus, amygdala etc.) involved in the AD pathology have
shown abnormal levels of these metals [62]. Oxidative stress is
produced when these metals interact with Aβ.

Iron is involved in Fenton’s and Haber-Weiss’s type of reactions
and result in the formation of the free hydroxyl radical. On interaction
between iron and Aβ, there is reduction of Fe3+ to Fe2+ and
generation of H2O2, which further produces free hydroxyl radicals
[63]. Accumulation of iron, ferritin and transferrin is seen in neuritic
plaques in AD [64,65]. One study has shown that distribution pattern
of iron in the brain of AD patients matches the distribution of senile
plaques and NFTs [66]. Another study has shown that level of iron
binding protein p97 is increased in blood serum and CSF in AD
patients [67]. Author has suggested that level of p97 can be used as
marker of the disease, can be useful in identifying the AD patients and
also for assessing the effect of the therapeutic approaches.

The presence of transition metals in amyloid deposits in AD
patients indicates direct interaction between these metals and Aβ
[68-70]. Copper and zinc both can bind to the Aβ monomer via three
histidine residues and one tyrosine residue, producing conformational
change in the peptide which promotes its aggregation [71,72]. Copper
is involved in free hydroxyl radical formation similar to iron. When
copper interacts with the Aβ, cuproenzyme like complex is formed
[71]. In this process, the electron is transferred from Aβ to Cu2+,
Cu2+ is converted to Cu+ forming Aβ radical [73]. During this
process copper donates two electrons to the oxygen, generating H2O2
[73,74], and setting up conditions to further produce hydroxyl radical
(Fenton type reaction) [75]. These data also suggest that ROS
generated from the interaction between transition metals and Aβ are
important contributors to the oxidative stress in Aβ-mediated
neurotoxicity and AD pathogenesis. Another fact that suggest the
possible role of copper in neurodegeneration is that copper is essential
for the activity of many enzymes like, cytochrome-ɕ oxidase and
superoxide dismutase [76].

Aluminum has been suggested to be involved in AD pathology
because of, high level of aluminum concentration in brains of AD
patients, reports of aluminum toxicity and an association between
aluminum concentration in water and the prevalence of AD [77].
Recently some studies have questioned the possible role of aluminum
because aluminum content is not elevated in the brain regions of AD
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patients that are selectively vulnerable to the neuropathologic changes
associated with the disease [78].

The linkage between aberrant metal homeostasis and AD pathology
has made researchers think about AD treatment targeting Aβ-metal
interaction and probably it can emerge as a promising therapeutic
option. Some metal chelating compounds have been tested for their
possible efficacy as a treatment option [79]. One such compound is
clioquinol, which is Cu/Zn chelator and orally bioavailable, it blocks
Aβ induced production H2O2 and Cu/Zn induced aggregation of Aβ
peptide and can significantly reduce the Aβ deposition in the brains of
transgenic mice [80,81]. One randomized, placebo controlled, double
blind, clinical trial has been done using clioquinol in patients with
moderately severe AD. Results showed that clioquinol treatment
lowered plasma Aβ42 levels and slowed cognitive impairment in more
severely affected patients during 36 week period [82].

Mitochondria Dysfunction and Oxidative Stress
Mitochondria are very essential organelles that are responsible for a

variety of cellular functions like ATP synthesis, calcium homeostasis,
cell survival and death. Mitochondrial electron transport chain is a
major site for ROS production in the cell and mitochondria are highly
vulnerable to oxidative stress [83,84]. Many studies have demonstrated
the role of mitochondria dysfunction in AD pathogenesis.
Hippocampal neurons have shown many mitochondrial and metabolic
abnormalities in AD patients compared to age matched controls
[85-87].

Studies have shown that oxidative phosphorylation is at lower level
in AD, and this can be explained by both, energy deficits and the
production of free radicals. Mitochondrial electron transport chain
that results in the production of ATP by via reduction of oxygen to
water is a complex enzymatic system which consists of 5 distinct
phases [35]:

Complex 1 (NADH dehydrogenase)

Complex 2 (succinate dehydrogenase)

Complex 3 (ubiquinol-cytochrome-ɕ oxidase)

Complex 4 (cytochrome-ɕ oxidase)

Complex 5 (ATP synthase)

Research evidences have confirmed mitochondrial dysfunction in
aging and neurodegenerative diseases such as AD, Huntington disease,
and Parkinson disease, and particularly dysfunction in cytochrome-ɕ
oxidase in complex 4 in AD [88]. One study showed that postmortem
cytochrome-ɕ oxidase activity was around 25-30% lower than normal
in cerebral cortex and platelets of AD patients [87]. Symonian and
hyman have demonstrated lower than normal cytochrome-ɕ oxidase
activity in dentate gyrus and the CA4, CA3 and CA zones of
hippocampus [89]. Another study has shown lower than normal levels
of mRNA concentrations in subunit 1 and 3 of cytochrome-ɕ oxidase
[90]. In fact amounts of cytochrome-ɕ oxidase are normal in brains of
AD patients; it is the enzyme activity that is affected [91].

Studies have shown that Aβ may disrupt mitochondria function and
contribute energy deficits and neuronal death seen in AD. The
interaction between Aβ and mitochondria is also responsible for the
free radicals production. Aβ was located in mitochondria in brains of
AD patients, in transgenic mice and in neuroblastoma cells expressing
human mutant APP [92,93]. In isolated mitochondria, Aβ can cause

oxidative injury to the mitochondrial membrane, disrupt protein
mobility and lipid polarity and inhibit the enzymes of mitochondria
electron transport chain, leading to increased mitochondrial
membrane permeability and cytochrome c release [94,95]. SODs are
enzymes that provide protection against superoxide and other free
radicals. The activity of one such enzyme manganese SOD (MnSOD)
is decreased which further increases the levels of ROS and
compromises the mitochondria function, and contributes to the loss of
mitochondrial membrane potential and finally caspase activation and
apoptosis [96].

Uncoupling proteins (UCPs) are mitochondrial anion carrier
proteins which are a part of cellular protective mechanisms against
oxidative damage to mitochondria. They are located on the inner
mitochondrial membrane [97]. Upon activation by ROS and other
products of lipid peroxidation, these proteins decrease the proton
motive force, reduce the mitochondrial membrane potential and ATP
production, eventually causing mitochondria uncoupling and decrease
ROS production from mitochondria [98]. Therefore UCPs are
considered as a protective mechanism against oxidative stress. In AD
brains the expression of UCP2, 4 and 5 is significantly decreased and
this protective mechanism becomes dysfunctional [99]. Evidences
suggest that there is a relation between Aβ accumulation and
expression and activation of UCPs. Upregulation of UCP2 and UCP4
protein levels in response to exposure to the superoxide is
dysfunctional in SH-SY5Y neuroblastoma cells expressing APP
mutant, mechanisms are unclear but it suggests that Aβ accumulation
may lead to irreversible cellular modifications that render the cells
vulnerable to the oxidative stress. Aβ accumulation is also linked to the
loss of calcium homeostasis in cells by mitochondria [100].

Researchers have discovered mutations in cytochrome-ɕ oxidase
genes that segregate with late onset AD [101]. It has given considerable
support to the link between mitochondrial function and cytochrome-ɕ
oxidase. Cytochrome-ɕ oxidase is produced by effect of both
mitochondrial and nuclear genes but mostly by two mitochondrial
genes, CO1 and CO2 encoding for the subunit I and II respectively.
CO3 is the gene encoding for the subunit III. One study has described
DNA polymorphisms in CO1 and CO2 but not in CO3, that aggregate
in AD [101]. However, further research concluded that these
polymorphisms are not present in the mitochondrial genome but are
rather nuclear pseudogenes [102,103].

Aβ Induced Toxicity and Oxidative Stress
Aβ is produced from the APP by proteolytic cleavage by two

membrane bound proteases beta-secretase and gamma-secretase. Beta-
secretase is also known as beta site APP cleaving enzyme 1 (BACE)
and gamma-secretase is a multiprotein complex consisting of
presenilin (PS), nicastrin (NCT), anterior pharynx defective 1 (APH1),
and presenilin enhancer protein 2 (PEN-2) [1,104,105]. Beta-secretase
and gamma-secretase cleaves APP at different sites and finally Aβ
peptides of varying length are generated [1,104,106]. Among them, 42-
amino acid form of Aβ is more toxic because of is faster self-
aggregation into oligomers [1,106,107]. Research evidences suggest
that soluble Aβ oligomers are the most neurotoxic and their level
correlate with severity of cognitive decline in AD [106,107]. Alpha-
secretase is a third protease that prevents the formation of toxic Aβ
peptides. Dysfunctional activity of these three proteases, results in Aβ
accumulation, which stimulates diverse cell signaling pathways, and
lastly resulting in synaptic degeneration, neuronal loss, and cognitive
decline [104,106-111].
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Studies have implicated oxidative stress in Aβ induced
neurotoxicity [112]. Levels of hydrogen peroxide and lipid peroxides
could be increased with Aβ treatment within cell cultures in in vitro
experiments [113]. Mutant forms of APP and PS-I can result in
increased hydrogen peroxide and nitric oxide production as well as
oxidative alterations of proteins and lipids, which were correlated with
the age associated Aβ accumulation, this confirms that Aβ promotes
oxidative stress [92,114-116]. Excessive activation of N-methyl D-
aspartic acid (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid (AMPA) receptors through NMDA agonists results in
tremendous influx of Na+ and Ca++ and secondary influx of H2O,
eventually causes acute cellular edema and narcotic cell death. The
persistent elevation of Ca2+ causes disruption of the mitochondria,
release of cytochrome C and activation of caspases, finally producing
programmed cell death (apoptosis) [117]. In Hippocampal neuronal
cell lines, the production of ROS by Aβ oligomers required the
activation of NMDA receptors and subsequent increase in Ca++
influx. All these findings suggest possible role of soluble Aβ oligomers
as a proximal neurotoxins and the involvement of oxidative stress in
the synaptic impairment and neuronal loss induced by soluble Aβ
oligomers [118]. Consistently, the natural antioxidants like, gingko
biloba, curcumin, and green tea catechins have shown to exert
neuroprotective functions by attenuating Aβ induced ROS generation
and neuronal apoptosis [119-122].

Apart from mediating Aβ induced cytotoxicity, studies have shown
that oxidative stress promotes the production of Aβ. Various studies in
transgenic mice models overexpressing mutant APP, have shown that
defects in antioxidant system caused elevated oxidative stress and
significantly increased Aβ deposition, while dietary antioxidants
lowered the elevated oxidized proteins and decreased Aβ levels and Aβ
plaque burden in brain [123-125]. Based on these findings,
overexpression of the MnSOD decreased oxidative stress and
increased antioxidant defense capability in brains associated with
reduction in Aβ plaque burden and restoration of some memory
deficits [126]. Similarly, deletion of cytoplasmic Cu/Zn SOD was
found to increase Aβ oligomerization suggesting the possible role of
oxidative stress in Aβ oligomerization [127]. These all findings suggest
that oxidative stress is important for Aβ oligomerization/deposition
and plaque formation.

Many studies have focused on how oxidative stress increases Aβ
production and revealed that oxidative stress decreases the activity of
alpha-secretase while promoting the activities of beta-secretase and
gamma-secretase, enzymes critical for generation of Aβ from APP
[128-132]. Studies have demonstrated that oxidative stress activates
major cell signaling c-Jun N-terminal kinase (JNK) pathway which
causes induction of BACE and PS1expression and activation of
gamma-secretase. As a result, more amount of Aβ is produced and its
clearance is decreased leading to Aβ deposition, plaque formation and
eventually neurotoxicity [133,134]. The activation of JNK pathway
[135-137] and increased BACE and PS1 activity [138-140] both have
been detected in AD brains; thus, it is possible that elevated levels of
oxidative stress in AD brains may initiate the activation of ROS
sensitive cell signaling pathway including JNK, which induces the
expression of BACE and PS1, ultimately enhancing the production of
Aβ and the deterioration of cognitive function.

Studies have shown that neuronal oxidative damage was more in
AD subjects with lesser amounts of Aβ deposition or in AD subjects
with shorter disease duration [141,142]. In addition to this, there was
an inverse relationship between the oxidative damage to nucleic acids

and the amounts of intraneuronal Aβ42 in the hippocampus and
subiculum of AD brains [143]. These strange observations have led to
the hypothesis that Aβ may be playing a protective role against
oxidative stress [144]. Evidences suggest that lower nanomolar levels
of Aβ can be neurotrophic or neuroprotective [145,146]. Aβ, in
normal physiological concentrations was shown to inhibit
autooxidation of lipoproteins in CSF and plasma [147] and to increase
hippocampal long term potentiation [148], whereas the higher
nanomolar levels of Aβ caused the toxic effects. From all these
findings, we can conclude that low levels of Aβ may have potential role
in normal function of the cells, while the abnormal production,
accumulation and aggregation of specific forms of Aβ, which can be
increased by oxidative stress, may impair the neuronal activity and
exacerbate neuronal oxidative insults, contributing to the pathological
development of AD [146-149].

Hyperphosphorylated Tau
Hyperphosphorylated Tau is the major component of the NFTs,

and is significantly correlated with neurodegeneration and cognitive
decline in AD [104]. Surprisingly, neurons with NFTs showed
significantly lower levels of 8-OHG despite obvious oxidative damage.
This suggests that tau phosphorylation and NFT formation may have a
protective role for neurons from oxidative stress [150]. However,
research evidences suggest that tau is associated with oxidative stress
in AD. In a Drosophila model of human tauopathy, reduction in gene
dosage of thioredoxin reductase or mitochondrial SOD2 promotes tau
induced neurodegenerative histopathological abnormalities and
neuronal apoptosis [40]. While, treatment with the antioxidants like
vitamin E and C decrease the level of ROS and tau induced neuronal
death [39,151]. The link between tau pathology and oxidative stress
has been demonstrated in transgenic mice models P301S and P301L.
Studies have shown that reduced activity of NADH-ubiquinone
oxidoreductase with mitochondrial dysfunction impairs mitochondrial
oxidative phosphorylation and ATP synthesis [152-154]. Accordingly,
Coenzyme Q10 (CoQ10) which is a key component of electron
transport chain significantly reduces lipid peroxidation and increases
complex 1 activity, consequently improves survival and behavioral
deficits in P301S mice [155]. In addition to this, the convergence of Aβ
and tau pathologies on mitochondria dysfunction was demonstrated
in triple transgenic mouse model (PR5/APP/PS2) (tripleAD), which
has both Aβ and tau histopathologic features of the disease in the brain
of the mouse [156]. When Proteomics analysis of the tripleAD brain
samples was done, it has demonstrated deregulation of 24 proteins, in
which one third were mitochondrial proteins related to complex 1 and
4 of electron transport chain [157]. Interestingly, deregulation of
mitochondrial complex 4 was shown to be Aβ dependent, while
deregulation of complex I was tau dependent [157]. The effects of both
Aβ and tau on mitochondrial function were found to be synergistic
and age associated, which results in reduction of mitochondrial
oxidative phosphorylation and ATP synthesis, eventually leading to
the synaptic loss, and neuronal death [157].

Apolipoprotein E and Oxidative Stress
Apolipoprotein E (ApoE) gene is polymorphic and it has three

isoforms: Apo ɛ2, Apo ɛ3 and Apo ɛ4. The ɛ4 allele has been linked to
both late onset family forms and sporadic forms of AD, whereas ɛ2
allele was found to offer protection. In central nervous system, ApoE is
produced mainly by astrocytes and take part in transport of cholesterol
to neurons through ApoE receptors, and is a crucial cholesterol carrier
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in brain and has possible role in neuroplasticity-related phenomena
because it requires changes in membrane lipids. One researcher has
found that ApoE has beneficial effect for neuronal protection but it is
isoforms dependent, like Apo ɛ4 isoform is less effective than Apo ɛ2
and Apo ɛ3 [158]. There is possibility that Apo ɛ4 may not be toxic but
it simply has less protective effects than ɛ2 and ɛ3. Some researchers
showed that ApoE has protective role against free radicals and has
significant antioxidant property but it is also isoforms dependent like,
effect is clearly perceptible with isoform ɛ2 but less so with ɛ3 and even
less so with ɛ4 [159]. However, another study showed that ApoE is
sensitive to free radical attack in isoform dependent manner. The
isoform ɛ4 is more sensitive to free radical attack than isoform ɛ3 and
ɛ3 is more sensitive than isoform ɛ2. An antioxidant like gingko biloba
extract EGb 761, protects ApoE from oxidation in a similar isoform
dependent manner, the Apo ɛ4 being maximally protected [160].
Further research has showed relation between lipid peroxidation in
AD and ApoE genotype. They showed that the level of lipid
peroxidation in AD is isoform dependent and were higher with Apo ɛ4
allele. The concentration of ApoE in brains of AD patients is inversely
proportional to the level of lipid peroxidation, which confirms the
hypothesis that ApoE has beneficial effect against lipid peroxidation
and the effect is more pronounced with ɛ4 allele. Research finding
showed that EGb 716 effectively decreases the level of lipid
peroxidation in the brains of AD patients [161].

Inflammation
Inflammation also takes part in the production of free radicals.

Deposition of Aβ initiates inflammatory cascade which attracts and
activates microglia and astrocytes, leading to their aggregation around
Aβ deposits, and release of pro-inflammatory mediators such as
cytokines, chemokines, ROS, and complement proteins that may result
in neuronal damage [162-164]. Microglia also has scavenger receptors
by which it interacts with Aβ, causes ROS secretion and cell
immobilization [165].

Antioxidant Therapeutics
The role of oxidative stress in AD pathology is very promising in

development of future therapeutic strategies for prevention and
possible treatment of AD. Various antioxidant therapies identified and
studied on the basis of role of antioxidants in decreasing the ROS
production and exerting neuroprotective effects on neurons in AD
patients [166,167]. Most abundantly researched and studied are
vitamins and carotene. Vitamin E (α-tocopherol), vitamin C (L-
ascorbic acid), and β-carotene (Endogenous antioxidant compounds
and also found in the diet) are chain breaking antioxidants which
decrease free radical mediated damage in neuronal cells and help to
inhibit dementia pathogenesis in mammalian cells. Vitamin B2 is an
antioxidant and has been shown to increase choline acetyltransferase
activity in cholinergic neurons cats and improves cognitive functions
in AD patients [168].

Here, we are not mentioning each and every antioxidant
therapeutic option because in last two decades there has been
abundant research and studies for protective role of antioxidants in
AD. We just mentioning the categories of the antioxidant therapies
based on their target actions and the recent research in the same field.
The possible categories are mentioned below:

Delanty and Dichter have made review of antioxidant therapies in
neurological disorders and categorize various available antioxidants

depending on whether compounds are endogenous or exogenous and
their underlying mechanism of action [169].

Endogenous enzymes, eg, superoxide dismutase, catalase,
glutathione peroxidase

Endogenous antioxidant compounds (also found in the diet), eg, α-
tocopherol, ascorbic acid

Other endogenous antioxidant substances, eg, uric acid,
glutathione, melatonin

Endogenous antioxidant cofactors, eg, selenium, coenzyme Q10

Precursors and derivatives of endogenous antioxidant compounds
and enzymes, eg, acetyl cysteine, polyethylene glycol superoxide
dismutase

Metal chelators, eg, deferoxamine

Naturally occurring plant substances, eg, flavonoids (in gingko
biloba and black tea), lycopene in (tomatoes), guilingji (a Chinese
herbal medicine)

Synthetic free radical compounds, eg, 21-aminosteroids,
pyrrolopyrimidines, ebselen

Compounds with other primary beneficial therapeutic effects, but
that may also have free radical scavenging activity, eg, selegiline,
probucol, carvedilol, aspirin, magnesium, statins [169]

Feng and Wang have described the various Antioxidant strategies
for the AD [170]:

Antioxidant therapies: vitamin E (α-tocopherol), vitamin C, β-
carotene, vitamin B2

Antioxidant Enzymes: superoxide dismutase (MnSOD-
Mitochondrial, Cu/Zn SOD-cytoplasmic), catalase, glutathione
peroxidase

Mitochondrial targeted Antioxidants: vitamin A, carotenoids,
vitamin C, and vitamin E and others (α-lipoic acid (LA),
coenzymeQ10, NADH, Mito Q, Szeto Schiller (SS) peptide, and
glutathione)

Dietary supplements: omega-3 polyunsaturated fatty acid
(docosahexaenoic acid), caffeine, and curry spice curcumin

Traditional Herbal Antioxidants: three major alkaloids in
CoptidisRhizoma-groenlandicine, berberine, and palmatine, silibinin
(silybin), a flavonoid derived from the herb milk thistle
(Silybummarianum), Ginkgo biloba, ginsenosides isolated from Panax
spp. ginseng herb [171]

Other Antioxidants: Melatonin, Monoamine Oxidase-B Inhibitor
(Selegiline), and Oestrogen

Melatonin is endogenous hormone synthesized in pineal gland. It
stimulates the expression and activity of glutathione peroxidase, SOD,
and NO synthetase, by this it scavenges ROS and RNS generated in
mitochondria, eventually contributes to the reduction of oxidative
damage in cells [172,173]. Selegiline is a selective monoamine oxidase-
B inhibitor with possible antioxidant properties [174]. One study
reported that in patients with moderate to severe AD, treatment with
selegiline reduces neuronal damage and slows the progression of AD
[175]. Estrogen has been shown to have role in neuronal protection
against oxidative damage and neuroprotective effects [176], but it does
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not produce any beneficial effects on cognition and functioning in AD
[170,177].

Tritrpenoids, are polycyclic compound derived from the linear
hydrocarbon squalene. They are widely distributed in edible and
medicinal plants [178]. Xanthoceraside, a triterpene derived from the
husk of xanthocerassorbifolia Bunge, is used by Chinese as a
traditional remedy for rheumatism. One researcher has reported that
xanthoceraside ameliorates the oxidative stress and inflammatory
responses induced by Aβ25-35, attenuates memory impairments and
is a potential candidate for an AD treatment [179]. Another
triterpenoid, 2-Cyano-3, 12-Dioxooleana-1, 9-Dien-28-Oic acid-
Methylamide (CDDO-MA) is studied in Tg19959 mice, after 3 months
of administration, it significantly improved spatial memory retention,
reduced plaque burden, Aβ42 levels, microgliosis and oxidative stress
in Tg19959 mice [180].

The Rhinacanthusnasutus is an herb found in Thailand and South
East Asia, belongs to Acanthaceae family [181]. Extracts from the leaf
and root contain varying amounts of phenolic and flavonoid
compounds, triterpenoid-lupeol, and the sterols stigmasterols and β-
sitosterol. The ethanol extracts of leaf and root have high free radical
scavenging effects. It protects HT-22 cells (mouse hippocampal cell
lines) against glutamate and Aβ toxicity. This protection is
combination of effects of various compounds, resulting from more
than one mechanism, including free radical scavenging, inhibition of
caspase and growth factor production [182].Puerarin, a major
isoflavone glycoside from Kudzu root (Puerarialobata) has been
reported to exhibit estrogen like and antioxidant properties.
Pretreatment of primary hippocampal neurons with peurarin
significantly reduced Aβ25-35-induced oxidative stress possibly
through scavenging of ROS, inhibiting lipid peroxidation and
interrupting the glycogen synthase kinase-3β (GSK-3β) signaling
[183].

Many antioxidants have been identified and studied for the possible
therapeutic role in AD, but none has given consistent beneficial
results, therefore their efficacy in prevention and possible treatment of
AD is always a question. Recently, many dietary and herbal
antioxidants and other antioxidants targeting the mitochondria have
shown promising results but it requires further research and
confirmation of the efficacy.

Conclusion
Growing evidence suggests that oxidative stress plays a major role

in the pathogenesis of AD. This production of the free radicals has
been linked to the disruption of the metal ion homeostasis,
mitochondrial dysfunction, genetic mutations, increased Aβ42
production and aggregation, decreased clearance of Aβ, inflammatory
mediators, and tau hyperphosphorylation, in a manner of vicious
pathophysiological cycle. Combination of all these processes results
into oxidation of lipids, proteins and nucleic acids, and their products
have been considered as blood biomarkers for early diagnosis of AD,
but their efficacy as early biomarkers is still a question. Regardless a
primary or secondary event, oxidative stress is important factor
contributing to the pathogenesis of AD. Free radical scavenging or
prevention of their formation may delay the onset or slow down the
progression of AD through various mechanisms, including reduction
of oxidative stress mediated neurotoxicity, inhibition of Aβ production
and aggregation, restoration of mitochondria function and metal
homeostasis, reduction in tau phosphorylation and polymerization.

Accordingly, research evidences suggest that various antioxidant
therapies play role in free radical scavenging and reduce oxidative
stress, therefore they are possible therapeutic options and research
targets. Some studies also have shown that metal chelators have some
role in reduction in oxidative stress arising due to metal
dyshomeostasis, but further research is required for confirmation of
their therapeutic role.
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