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Introduction
A typical characteristic of longitudinal studies is that study subjects 

are measured over repeated time intervals. The dropout of subjects 
along the time scale is common. The dropout process is assumed to 
be stochastic in nature and generally dependent upon the observed 
or unobserved outcomes. It also may depend upon covariates, such as 
the treatment arm an individual is allocated to. The dropout may be 
regarded as a “failure” outcome in certain limited settings. Of prime 
concern to this study, is the more general situation that characterizes 
the statistical behavior of the original outcome, while dropout is treated 
as a “nuisance” occurrence that must be tolerated. As a result of this, the 
distinction between the outcome and the dropout processes needs to 
be simultaneously maintained. Rubin, Little and Rubin [1,2] introduce 
different mechanisms for denoting dropout or non-response. A dropout, 
or non-response, process is said to be missing completely at random 
(MCAR) if the non-response process is a random event independent 
of both unobserved and observed outcomes, missing at random 
(MAR), if conditional upon the observed outcomes, the non-response 
process is independent of the unobserved outcomes, and missing not at 
random (MNAR) when the non-response process depends only upon 
the unobserved outcomes. In the context of likelihood and Bayesian 
inferences, and when the parameters describing the measurement 
process are functionally independent of the describing the non-response 
process, MCAR and MAR are ignorable, while a non-random process is 
non-ignorable [1,2]. When data are MNAR, the missingness cannot be 
ignored from the analysis. In this case, the longitudinal measurement 
process and the missingness indicators may be considered jointly [3].

It is possible to consider more general models when one assumes 
random missingness mechanism to be untrue [4]. Examples on work 
of MNAR modeling include [5]. These belong to the so-called selection 
models family [2]. A selection model factors the joint distribution of the 
measurement and dropout mechanism into two parts, that is, a marginal 
measurement model that describes the distribution of the underlying 
complete data, and a dropout mechanism that describes the distribution 
of the missing data indicators, conditional upon the complete data. For 
more details, see, for example Diggle and Kenward [5]. This is intuitively 

appealing since the marginal measurement distribution would be of 
interest also with complete data [3]. Furthermore, the missing data 
mechanisms (MCAR, MAR and MNAR) are most easily developed 
within the selection setting. However, it is often argued, especially within 
the context of non-random missingness model, that selection models, 
although identifiable, should be approached with caution [6]. Indeed, 
one has to make untestable assumptions about the missing data process. 
Selection models originated from the ref. [7]. The theoretical translation 
from the model [7] to selection model [5] have been addressed [5,8]. 
Consider a selection model for the study of a longitudinal measurement 
when data are MNAR by letting the probability of dropout depend 
on the possibly unobserved measurements. They use a linear mixed 
model for the longitudinal measurement and logistic regression model 
for the dropout process to describe the dependency between dropout 
indicators and measurements. The dropout indicators are used to 
indicate participant dropout. However, the intermittent missing data is 
assumed to be missed at random, and it can be ignored in the model. 
For alternatives for the missing data processes [3] an earlier work on 
the selection model analysis is given by refs. [6,7]. Selection models 
that are applied to the regression analysis of categorical variables with 
outcome subject to non-ignorable non-response are applied by [9,10] 
used a selection perspective for the conditional expectation model in a 
semi-parametric approach. For the ignorable non-response hypothesis, 
[11] proposed a general class of selection models under non-monotone 
missing data pattern. In the case of the selection models for repeated 
measurements, sensitivity of the conclusions to the assumptions about 
the dropout mechanism has been illustrated by Kenward [12]. A semi-
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parametric approach of missing data mechanism is proposed [13] in 
order to avoid the impact of the parametric missing data specification 
in a selection model perspective. With regard to the nonmonotone 
pattern, selection models have been extended [14]. In addition to 
Troxel’s work, within the selection model framework, models have been 
proposed for non-monotone pattern as well, for instance, see [15]. In 
the context of categorical and other types of measure, in many examples, 
see [16,17], the selection models were also developed. Additionally, a 
number of proposals have been made for non-Gaussian outcomes, see 
[18]. Further details in selection models can be found in refs. [18-21].

This paper deals with the analysis of longitudinal data when there 
is non-ignorable dropout. We illustrate this analysis by considering the 
problem of missing data that occurs with a continuous outcome. We 
focus on the use of the Diggle and Kenward [5] model as a tool for 
assessing the sensitivity of a selection to the modeling assumptions. We 
restrict attention to a model for repeated Gaussian measures, subject to 
where dropout possibly depends upon missing outcomes, i.e., MNAR. 
A monotone missing pattern has been constructed in the model. 
Similar to Diggle and Kenward [5], a selection model is specified 
that uses a logistic regression model to describe the dependency of 
missing data indicators upon the longitudinal response. In the current 
application, we modify the analysis software to accommodate the case 
of more than two treatment arms as a computational extension. Our 
main objective here is to investigate the influence that might be exerted 
on the considered data by the dropout process. In order to investigate 
our objective, we carry out an application for analyzing incomplete 
longitudinal data with dropout. We outline the fitting of the selection 
model which is based on the linear mixed model for the measurement 
process as well as a logistic regression for dropout process. The model 
was fitted using standard statistical software (SAS version 9.2, IML 
macro). This is done by using a practical example in the form of a 
multi-centre clinical trial data. The remainder of the article is organized 
as follows: the data setting and modeling framework are introduced 
in Section 2. In Section 3, a background for the selection model is 
provided, followed by descriptions of the selection model based on 
Diggle and Kenward model frameworks as well as detailed discussion of 
the linear mixed model and dropout model. In Section 4, we present an 
application including a description of the data set used in the analysis. 
The results of the estimation of the model are then described in Section 
5. We conclude with a discussion of the results in Section 6. 

Modeling Longitudinal Data with Dropout 
To introduce some necessary notation, we follow the terminology 

provided by Molenberghs and Kenward [3,8] based on the standard 
modeling frameworks of [1,22]. So, assume that for each independent 
subject i=1,..., N in the study a sequence of responses Yij is designed to be 
measured at a fixed set of occasions j=1,..., n. The outcomes are grouped 
into a vector Yi=(Yi1,..., Yin)t. It is often necessary to split the outcome 
vector Yi into two sub-vectors, Yo

i and Ymi, indicating the observed 
and missing components, respectively. Additionally, one can define an 
indicator Rij, for each occasion j as follows: Rij=1, if Yij is observed and 
Rij=0 if not. The indicators of missing data (Rij) can be grouped into a 
vector Ri which is of parallel structure to Yi. The processes generating 
the vectors Yi and Ri are referred to as the measurement and missing 
data processes, respectively. We now pay attention to the dropout 
setting which is a particular case of monotone pattern of missingness in 
which a missing value whenever it occurs to any subject in the sequence 
of repeated measurements of the outcome is never followed by any 
observed measurement on that subject. Alternatively, when dropout 
occurs, one could use a scalar variable Di called the dropout indicator, 

rather than the missing data indicator Ri, defined as Di=1+Pnij=1 Rij, 
indicating the occasion at which dropout occurs. Next, we consider the 
density of the full data (Yi,Ri), denoted by

f (y
i
, r

i | X
i
, W

i
, θ, ψ),                                                                          (1)

Where X
i
 and W

i
 are covariate matrices for the measurement and 

missing data mechanism, respectively, and the parameter vectors θ and 
ψ describe the measurement and missingness processes, respectively. 
The taxonomy, constructed by refs. [1,22], is based on the following 
factorization

f (yi, ri | Xi, Wi, θ, ψ)=f (yi | Xi, θ)f (ri | yi, Wi, ψ),                                (2)

Where the first and second factors denote the marginal density of 
the measurement process and the density of the missing data process, 
conditional upon the outcomes, respectively. Factorization (2) forms 
the basis of selection modeling as the second factor corresponds to 
the self-selection of individuals into observed and missing groups. 
Using the reversed factorization, an alternative taxonomy which can be 
considered is called pattern mixture models. They have the following 
form

f (yi, ri | Xi, Wi, θ, ψ)=f (yi | ri, Xi, θ)f (ri, Wi, ψ).                                (3)

In fact, equation (3) can be described as a mixture of different 
populations, characterized by the observed missing data pattern. An 
initial attention of these models were provided by ref. [2,6], while 
further attention later was provided by many authors, see, for example 
[23]. As we mentioned above, Rubin’s taxonomy [1,22] of missing data 
process is based on the second factor of equation (2), thus within the 
selection modeling framework

f(ri | yi, Wi, ψ )=f(ri | y
o i, y

m
i,Wi, ψ).                                                     (4)

In equation (4), the covariates for the measurement process are 
assumed measured but suppressed for simplicity sake. The form in 
equation (4) can be discussed as follows: when the missingness process 
is independent of the responses, i.e.,

f(ri | yi, Wi, ψ )=f(ri | Wi, ψ).                                                                 (5)

Then the process corresponds to the case of missing completely at 
random (MCAR). If the missingness process is only independent of the 
unobserved responses Y m, but depends on the observed responses Y 
o, consequently, assuming the form

f(ri | yi, Wi, ψ )=f(ri | y
o i,Wi, ψ).                                                           (6)

Then the process corresponds to the case of missing at random 
(MAR). Finally, when the missingness process depends on the missing 
data Ym

i, the process corresponds to the case of missing not at random 
(MNAR). As pointed out by Rubin, Little and Rubin [1,2], when MAR 
mechanism holds, the parameters θ and ψ are functionally independent. 
In practice, the likelihood of interest then depends upon the factor f (yo

i| 
θ). For this reason, when using a likelihood based analysis under the 
MAR assumption, the missing value mechanism is sometimes said to 
be “ignorable”. By contrast, if the likelihood of interest only depends 
upon the factor f (ym

i | θ), then this is referred to as “non-ignorable” 
setting. Therefore, when ignorability holds, likelihood-based and 
Bayesian inferences are valid [8,18].

A Selection Models for Non-ignorable Dropout
In the framework of the selection models, it is not always reasonable 

to assume that MAR holds, and a wide range modeling approaches for 
MNAR data have been proposed. One such is the model proposed by 
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Diggle and Kenward [5] for continuous outcomes with dropout. In this 
section, we first describe the Diggle and Kenward [5] selection model 
for continuous longitudinal data. We then discuss in detail the linear 
mixed model and the dropout model.

Diggle and Kenward’s (1994) model for continuous 
longitudinal outcomes

A model for longitudinal Gaussian data with non-random 
dropout has been proposed by Diggle and Kenward [5]. Their model 
assumes that the missingness mechanism is MNAR which combines 
the multivariate normal model for longitudinal Gaussian data with a 
logistic regression for the dropout process. From the notation presented 
in Section (2) recall that for subject i, i=1,..., N, a sequence of responses 
Yij is designed to be measured at time points tij, j=1,..., n, resulting in a 
vector of observed outcomes Yi=(Yi1,..., Yini )

t of measurements for each 
subject. Note that although n measurements per subject were planned 
the vector Yi is of size ni < n because of missing observation. In the case 
of dropout, the complete Yi is only partially observed. If we let Di be the 
occasion where dropout occurs, then Di > 1, and Yi can be partitioned 
into the (Di − 1)-dimensional observed component Yo

i and the (ni − 
Di+1)-dimensional missing component Ym

i. If no dropout occurs, we 
let Di=ni+1, and Yi equal Yo

i. For the ith subject, the observed data is (Yi
o, 

di), thus, the likelihood contribution is proportional to the marginal 
density function.

i i i i(y , | , ) (y , | , ) (y | ) ( | y , ) .m m
i i i i if d f d dy f f d dyθ ψ θ ψ θ ψ= =∫ ∫              (7)

In equation (7), a marginal model for Yi can be combined with a 
model for the dropout process, conditional upon the measurement, 
and the measurement process model, including the vectors of 
unknown parameters, θ and ψ, respectively. More formally, we denote 
the conditional probability of dropout by gj (yij, hij ) at time j given 
the response at time j, and hij=(yi1,..., yij−1) which denotes a possibly 
observed history of subject i until time ti, j−1. According to Diggle and 
Kenward [5], the dropout process allows the conditional probability 
for dropout at occasion j, given that the subject was still observed at 
the previous occasion, to depend upon the history hij and the possibly 
unobserved current outcome yij, but not upon future outcomes yik, k>j. 
Now, for calculating the dropout probability for each occasion, we use 
the conditional probabilities P (Di=j | Di ≥ j, hij, yij, ψ) which can be 
expressed as follows:

P (Di=j | Yi)=p(Di=j| hij, yij, ψ)

P(Di=j | yi, )=P(Di=j | hij, yij, )
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 (8)

Assuming no missing values at occasion j=1. As mentioned 
above Diggle and Kenward [5] combine a multivariate normal for the 
measurement process together with a logistic model for the dropout 
process. To obtain parameter and precision estimates from the 
combined measurement/dropout model, they use maximum likelihood 
that involves marginalization over the unobserved components, i.e., 

Y i
m. In fact, under repeated measurements for the ith subject, the 

measurement model assumes that the vector Yi satisfies the linear 
regression model Yi ∼ N (Xiβ, Vi), where i=1,…N, in which β is a vector 
of population-averaged regression coefficients. Further Verbeke and 
Molenberghs [8] pointed out that the matrix Vi can be left unstructured 
or assumed to be of a specific form, for example, resulting from a 
linear mixed model, a factor-analytic structure, or spatial covariance 
structure. As Molenberghs and Kenward [3], there is some advantages 
to using an unstructured covariance matrix. Following, we introduce 
the measurement and dropout models that can be combined for the 
dropout process.

Measurement model: For continuous outcomes proposed linear 
mixed-effects models, and they can be written as follows

Yi=Xiβ+Zibi+Si+εi,                                                                                (9)

Where Yi is the ni-dimensional response vector for subject i, 1 ≤ 
i ≤ N, N is the number of subjects, Xi and Zi are (ni × p) and (ni × q) 
known design matrices, β is the p-dimensional vector containing the 
fixed effects, bi ∼ N (0, G) is the q-dimensional vector containing the 
random effects. The residual components εi ∼ N (0, σ

2
In ), and b1,..., 

bn, ε1,..., εn are assumed to be independent. The serial correlation is 
captured by the realization of a Gaussian stochastic process, Si which 
is assumed to follow a N (0, τ2Hi) law. Here, the serial covariance 
matrix Hi dependent upon i through the number n of observations 
and through the time points tij at which measurements are taken. Using 
autocorrelation function ρ(tij − tik), the structure of the matrix Hi is 
determined. A first simplifying assumption is that Hi depends upon the 
time interval between two measurements Yij and Yik, i.e., ρ(tij −tik )=ρ(u), 
where u=|tij −tik | represents the time lag. The autocorrelation function 
decreases such that ρ(0)=1 and ρ(u) → 0 as u → ∞. Finally, G is a general 
(q × q) covariance matrix with its (i, j) element given by dij=dji. The 
random effects in model (9) stem from heterogeneity between subjects, 
in the sense that various aspects of their behavior may exhibit inter-
subject random variation. It follows from model (9) that, given the 
random effect bi, Yi is normally distributed with mean vector Xiβ+Zibi 
and covariance matrix Vi. Thus, after integrating over random effects, 
inference for the marginal distribution of the outcome Yi, can be written 
as follow

Yi ∼ N (Xiβ, Vi),                                                                                   (10)

Where V
i=Z

i
GZ 

t+σ
2
I

ni
+τ 2Hi is a (ni × ni) covariance matrix which 

combine both the measurement error and serial components. On the 
other hand, to include various fixed effects, a random intercept, and 
allowing Gaussian serial correlation, a linear mixed model is used for 
the measurement model process. In this case the covariance matrix Vi 
becomes

Vi=dJn+σ2Ii+τ 2Hi,                                                                              (11)

Where Jni is an (ni × ni) matrix with all elements equal to 1, Ii is the (ni 
× ni) identity matrix, and Hi is determined through the autocorrelation 
function ρujk, where µjk the Euclidean distance between tij and tik, thus
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Where σ2>0 and 0 ≤ ρ ≤ 1. The covariance structure Vi in equation 
(11) combines both serial autocorrelation and a shared random effect 
variance in the estimation. The main problem with this approach, 
which is due to Diggle and Kenward [5], is that it assumes stationary. 
In practice, if times of measurement are common, the unstructured 
matrices can be used (aside from very small trials) and for unbalanced 
times, a random coefficient model.

Dropout model: As noted previously, we focus only on 
incompleteness due to dropout, and thus we assume that the first 
measurement Yi1 is measured for all subjects in the study. In agreement 
with notation introduced in Section 2, the selection model arises when 
the joint likelihood of the measurement process and the dropout 
process is factorized as follows 

f (yi, ri | Xi, Wi, θ, ψ)=f (yi | Xi, θ)f (ri | yi, Wi, ψ).                             (12)

We use the linear mixed-effects model introduced in equation (9) 
to model the measurements process, together with a logistics regression 
to describe the dropout process. According to Diggle and Kenward [5], 
the model for dropout process is based on a logistics regression for the 
conditional probability of dropout at occasion j, given the subject is still 
in the study. Again, the gi(yij, hij ) denotes this probability of dropout at 
time j, in which hij=(Yi1, Yi2,..., Yij−1) is a vector possibly containing all 
observed measurements up to including occasion j-1, as well as relevant 
covariates, in the conditional probability of dropout model. Modeling 
the dropout mechanism may be simplified by allowing dropout to 
depend upon the current measurement and immediately preceding 
measurement only with corresponding regression coefficients, i.e., ψ1 
and ψ2. A commonly used version of such a logistic dropout model is 

logit[P (Di=j | Di ≥ j, hij, yij, ψ)]=ψ0+ψcWi+ψ1yi,j−1+ψ2yij,              (13)

Where ψ0 and ψc denote the intercept and the vector of parameters 
for covariates Wi, respectively. The model in equation (13) contains 
special cases corresponding to MAR and MCAR mechanism that 
can be obtained from ψ2=0 or ψ1=ψ2=0, respectively. As pointed 
out by Diggle and Kenward [5,8], a likelihood ratio test (LRT) can 
be used to compare the model fit under a model that assumes the 
missing data due to dropout are MCAR versus MAR, that is, the LRT 
for MCAR versus MAR has an approximate χ2 distribution. The LRT 
statistic is used to test the hypothesis of ψ2=0 (i.e., MAR), where 
dropout is no longer dependent upon the current measurement, 
and similarly to test the hypothesis of ψ1=ψ2=0 (i.e., MCAR), where 
dropout is assumed to be at random, the dropout therefore, does not 
depend upon the outcome altogether. However, the use of the LRT is 
inappropriate for hypothesis test for MNAR versus MAR when all the 
other modeling assumptions hold, due to the fact that the behavior 
of the LRT statistic for the MNAR parameter ψ2 is non-standard, 
since the availability of the information on ψ2 is very rare and 
interwoven with other features of both measurement and dropout 
models [4]. In addition Little and Rotnitzky et al. [24,25] illustrated 
that the limiting distribution is a χ2 mixture with characteristics 
controlled by the singular information matrix. Therefore, for the ψ2 
associated with MNAR model, the score equation creates a quasi-
linear dependence structure in the system of score equations. This 
issue is studied in detail by Jansen et al. [4], while, in the context 
of an onychomycosis study [26] have stated that excluding a small 
amount of measurement error can change drastically the LRT 
statistic for the MAR null hypothesis, see also for example [8]. In 
practice, such a distinction (MAR/MNAR) can only be made using 
untestable modeling assumptions such a distributional form, see, 
[12]. This problem is really laid bare in Molenberghs et al. [27] 

which show that the formal-based distinction between MAR and 
MNAR is not possible as for any MNAR model there exists an MAR 
model that fits the data equally well. The similarity of the MAR and 
MNAR models with respect to fitting to the observed data, may present 
different predictions of the unobserved outcomes, conditional upon 
the observed ones. Hence, it is broadly agreed that the role of such 
MNAR models is in sensitivity analysis, which is if the assumptions are 
changed, the conclusions from the primary (typically MAR) analysis 
are also changed. Further detail on the precise nature of sensitivity 
analysis can be found in Molenberghs and Kenward [3,18].

Application to the Multi-centre Trial Data
Below we describe the data set that is used in the analysis as well 

as the application schemes that are used in the analysis of the selection 
models based on Diggle and Kenward [5] approach. In terms of the 
application of the statistical techniques considered in this study, we use 
the statistical software, SAS programme.

Data set - multicentre trial data

The example that is used here concerns the analysis of repeated 
measures designs and demonstrates how to investigate a specific 
scenario based on dealing with longitudinal data that has a nonignorable 
dropout mechanism. The data is based on experiments that rely on the 
split-plot design assumptions. Such experiments which include repeated 
measures designs have structures that involve more than one size of 
experimental unit. In this case, a subject is measured over time where 
time is one of the factors in the treatment structure of the experiment. 
By measuring the subject at several different time occasions, the subject 
is essentially being (split) into parts (time intervals), and the response 
for each part is measured. The larger experimental unit is the subject or 
the collection of time intervals which constitute a cluster. The smaller 
unit is the interval of time during which the subject is exposed to a 
treatment or an interval just between time measurements. The only 
departure from the classical split-plot assumptions is because in this 
case the subplot treatments (time intervals) are not randomized. The 
data used is from a multi-centre experiment data which is a typical 
longitudinal example. The data used here is described and reported 
in Milliken and Johnson [28]. This example considers an experiment 
that involve three drugs where each subject was measured repeatedly at 
three different time points (j=1, 2, 3), where the outcome is described 
only as a measure of a continuous blood component. The data were 
collected (Table 1).

By three different investigators (or in three different centres) and 
contains fifty-one patients. There are seventeen patients assigned 
to each drug. All of the fifty-one patients were observed at the first 
occasion, whereas only eight and ten patients were not seen at the third 
occasion and at both the second and third occasions, respectively. In 
Table 1, we present the numbers of dropouts by time, centre and drug. 
The dropouts occur for all drugs and centres. It is clear that drug2 
contains more percentages of missing values. The observed data for all 
subjects are shown in Figure 1. The main purpose of this experiment 
has been to estimate the effects of the drugs on the blood component 
over time, as well as to investigate the relationship between drugs and 
blood component. In this study, we restrict attention to the influence 
that might be caused on these effects by the dropout mechanisms as 
well as to examine which dropout mechanism better describe the data. 
The full results of the analysis of this trial using a likelihood based linear 
mixed models approach have been reported elsewhere by Milliken and 
Johnson [28] (Figure 1).
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Diggle-Kenward model applied to the multi-centre trial data

To apply the selection models due to Diggle-Kenward model 
based on continuous longitudinal data, in the current computations, 
we modified the SAS macro that was reported in Dmitrienko et al. 
[29] that maximizes the log-likelihood for the model using PROC 
IML to the case of three drugs as opposed to most application which 
are based on two drugs. We carried out an application to the above 
modeling strategy to the multi-centre data as earlier described. We fit 
the Diggle and Kenward model in accordance with the MCAR, MAR 
and MNAR assumptions to our own data set. The three post-baseline 
visits correspond to the measurements taken at times 1, 2 and 3. In the 
linear mixed model in equation (9), we allow the inclusion of a variety 
of fixed effects, a random intercept, and Gaussian serial correlation. 
Furthermore, the dropout model in equation (13) is considered, 
assuming that the dropout does not depend upon the covariates. Apart 
from the explicit MCAR, MAR, and MNAR versions of this model, we 
will also conduct an ignorable analysis (that is, an analysis based on the 
measurement model only, ignoring the dropout model). Firstly, we fit a 
linear mixed model (LMM) of the form in equation (9) in order to obtain 
initial values for the parameters estimation of the measurement model. 
Assuming that the first measurement Yi1 is observed for every subject 
in the study. We thus assume a linear time trend of the response within 
each drug group. This implies that each profile can be described using 
two parameters, namely the intercept and a slope. The error matrix is 
chosen to be of the form (11). Since the multi-centre trial data contains 
fifty-one subjects (i=1,...,51) observed at three time points (j=1, 2, 3) for 
three drugs (p=1, 2, 3), the model can be written as follows

Yijp=β0+Ap+β1Tj+β1p(T A)jp+εijp,                                                         (14)

where Yijp is the blood component of subject i at time j on drug p, Ap 
denotes the pth drug effect, Tj denotes the jth measurement time effect, 
(AT )jp denotes the interaction effect between time and drug, and εip ∼ 
N (0, Vi), where Vi=dJ3+σ2I3+τ 2Hi, with 
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Using the set to zero constraint (A1=0), β0 is the intercept for the 
drug1 group, (β0+α2) is the intercept for the drug2 group, and for drug3, 
the intercept is (β0+α3), where α denotes the fixed effects. These are, 
respectively, referred to as β01, β02 and β03 in the results, as we will see in 
Tables 2-4. The slopes are β1, (β1+β12) and (β1+β13) for drug1, drug2, and 
drug3, respectively, referred to as β11, β12 and β13 in the results presented 
in Tables 3 and 4. The SAS PROC MIXED with REPEATED statement 
can be used to obtain the initial values. In conforming to the model 
introduced in equation (13), we use the following logistic regression 
model for the dropout model probabilities.

logit[P (Di=j | Di ≥ j, hij, yij, ψ)]=ψ0+ψ1yi,j−1+ψ2yij, j=1, 2, 3,        (15)

Where ψ1 and ψ2 denote the logistic regression coefficients for 
current and immediately previous observations, respectively, and 
j denotes the time points. In practice, the combined model for 
measurement and dropout can be fitted to the data using a generic 
function maximization routine in the maximum likelihood [12]. In 
doing so Diggle and Kenward [5] used the simplex algorithm of [30] 
to maximize the log-likelihood. However, for the same purpose, we 
use another optimization method that is available in SAS software, 
so-called Newton-Raphson ridge optimization. For more detail of this 
method, see [29]. Therefore, we use SAS IML macro which maximizes 
the likelihood for the model, so as to fit the selection models for the 
dropout process. The results of initial values for the parameter estimates 
of the logistic dropout model can be obtained as in Table 2 [29]. 

Results 
Next, we introduce the results of the application that was discussed 

earlier. The initial values for the parameters of the linear mixed model 
are listed in Table 3. The results of maximum likelihood for the 
parameter estimates (standard errors) from the measurement model, 
as well as the results of the variance model under the three missingness 
mechanisms are presented in Table 4. Examining these (Table 3).

Results, we see that as expected, the parameters estimation and 
corresponding standard errors of the fixed effects of the measurement 
model and the variance model were the same under ignorability, MCAR 
and MAR mechanisms. This confirms what is expected in theory, see, [3], 
for example. We now study factors that influence dropout. As discussed 
above we fit the three dropout models in turn, under the mechanisms 
MCAR (ψ1=ψ2=0), MAR (ψ2=0), and MNAR, respectively. Table 5 
shows the results of the three dropout models that were considered. 
Here, the evidence for the MNAR setting is only border line. Thus, 
under the MNAR assumption, the maximum likelihood estimates for 
ψ1 (-0.29) and ψ2 (0.30) were more or less equal, but with opposite 
signs, pointing to a relationship between the incremental change and 
probability of dropout. This finding agrees with the theoretical findings 
of [3], noting that the dropout often depends upon the increment yij − yi, 
j−1. This can be justified by the fact that two subsequent measurements 
are usually positively correlated [3,31]. Furthermore, as can be seen in 
the dropout model, the parameter estimate (ψ2=0.30) in our model is 

Time
Centre-R Centre-S Centre-T

Drug 1 Drug 2 Drug 3 Drug 1 Drug 2 Drug 3 Drug 1 Drug 2 Drug 3
1 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 2 0 3 3
3 2 3 0 1 0 2 3 4 3

Total 3 4 0 1 0 4 3 7 6

Total 7 5 16

Table 1: Numbers of dropouts in the multi-centre trial.

 

Figure 1: Multi-centre data. Observed data for all subjects.
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positive, indicating a strong association between the dropout and the 
increment in the outcome variable (blood component) between two 
successive times. In addition, as mentioned previously, the maximum 
likelihood estimates of ψ1 and ψ2 have different signs, and furthermore, 
although there is a strong positive association between ψ1 and ψ2, the 
likelihood based 95% confidence interval for these two parameters (ψ1, 
ψ2) is largely contained in the negative-positive quadrant, that is, the 
intervals for the parameter space where ψ1 < 0 and ψ2 > 0. The full 
dropout model estimated from the MNAR process is as follows:

logit[P (dropout)]=−2.03 − 0.29yi,j−1+0.30yij.                               (16) 

One of our interests is to investigate whether the dropout process 
is MAR or MCAR, in other words, whether or not ψ1=ψ2=0 in equation 
(15). The likelihood ratio test is used to compare

 The maximum likelihood parameter estimates and minus twice the 
maximized log-likelihood from the MCAR, MAR and MNAR models 
appears in Table 4. Comparing the log-likelihood estimates from the 
MAR and MCAR models, we see that the likelihood ratio for the null 
hypothesis ψ1=ψ2=0 is 596.99-591.43=5.56 which is significant with 
p<0.01 on 1 degree of freedom. The test suggests that an MAR dropout 
process cannot be ruled out, i.e., there is evidence in favour of the MAR, 
that is, dropouts are not completely at random in the context of the 
assumed model. Further, the test also support MAR over MNAR as the 
LRT statistics is 1.43 which is not significant. However, great care has 
to be taken regarding the sensitivity of the MNAR model to modeling 
assumptions fit here. From the dropout model in equation (15), it is 
possible to extend the model by using Table 4.

More observed outcomes. According to Diggle and Kenward 
[5,32], the dropout in the non-ignorable models tends to depend upon 
the increment (i.e., the difference between the current and previous 
measurements, yij − yi,j−1). Including this effect implies a switch to the 
MAR framework. Some insight into this fitted model can be obtained 
by rewriting it in terms of the increment. In our case, we obtain the 
following

logit[P (dropout)]=−2.03+0.30(yij − yi,j−1)+0.01yi,j−1,                 (17) 

which indicate that dropout is related to the increment yij − yi,j−1, 
rather than to any of the actual observations yij or yi,j−1, and such that 
individuals that improve most (large increments) are very likely to drop 
out from the study. On the other hand, it is useful also to rewrite this with 
respect to the increment and the sum of the successive measurements. 
Thereby, by rewriting equation (15), the fitted dropout model equals

logit[P (Di=j | Di ≥ j, hij, yij, ν)]=ν0+ν1(yi,j+yi,j−1)+ν2(yij − yi,j−1), j=1, 
2, 3,                                                                                                            (18) 

Where ν1=(ψ1+ψ2)/2 and ν2=(ψ1 − ψ2)/2. The parameters ν1 and ν2 
represent dependence on level and increment in the outcome (blood 
component), and these quantities are likely to be much less strongly 
correlated than yi,j and yi,j−1. Thus from the fitted MNAR model in 
equation (18), we have

  parameter
Dropout mechanism ψ0 ψ1 ψ2

MCAR 1    
MAR ψ 0 ,MCAR 1  

MNAR ψ 0 ,MAR ψ 0 ,MAR 1

Table 2: Initial values for the parameters of the dropout model.

Effect Parameter Estimate Rounded to initial value

Fixed-effects parameters

Drug 1 intercept β01 13.9102 13.91

Drug 2 intercept β02 -3.6667 -3.67

Drug 3 intercept β03 0.6853 0.69

Drug 1 slope β11 1.198 1.2

Drug 2 slope β12 1.5146 1.51

Drug 3 slope β13 1.3481 1.35

Variance parameters

Random-intercept variance d 8.9976 9

Serial process variance τ 2 3.4068 3.41

Serial process correlation ρ 1 1

Measurement error variance σ2 0.7423 0.74

p-value

Drug 1 effect   0.0061  

Drug 2 effect   0.6004  

Table 3: Multi-centre data. Parameter estimates of the linear mixed model, used as 
initial values for the Diggle-Kenward model.

Effect Parameter MCAR MAR MNAR

Measurement model

Drug 1 intercept β01 13.91 (0.92) 13.91 (0.92) 13.90 (0.92)

Drug 2 intercept β02 -3.67 (1.30) -3.67 (1.30) -3.71 (1.30)

Drug 3 intercept β03 0.69 (1.30) 0.69 (1.30) 0.61 (1.32)

Drug 1 slope β11 1.20 (0.17) 1.20 (0.17) 1.24 (0.17)

Drug 2 slope β12 1.51 (0.19) 1.51 (0.19) 1.60 (0.20)

Drug 3 slope β13 1.35 (0.18) 1.35 (0.18) 1.38 (0.18)

Variance model

Random-intercept variance d 8.99 (2.63) 8.99 (2.63) 8.99 (2.63)

Serial process variance τ 2 3.41 (0.56) 3.41 (0.56) 3.35 (0.57)

Serial process correlation ρ 1.00 (0.00) 1.00 (0.00) 1(0.01)

Measurement error 
variance σ2 0.74 (0.12) 0.74(0.12) 0.76 (0.12)

-2£   596.99 591.43 595.56

Table 4: Multi-centre data: Maximum likelihood for the parameter estimates 
(standard errors) under MCAR, MAR, and MNAR assumptions without covariate 
in the dropout model

  Dropout Mechanism

Parameter MCAR MAR MNAR

ψ0 -1.41 (0.31) -1.52 (0.85) -2.03 (0.89)

ψ1   0.01 (0.12) -0.29 (0.40)

ψ2     0.30 (0.41)

Table 5: Dropout model: Comparison of the Parameter estimates (standard errors) 
for MCAR, MAR and MNAR models.
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logit[P (dropout)]=−2.03+0.005(y
i,j+

y
i,j−1) − 0.295(y

ij − y
i,j−1), (19)

Which is to say that the probability of dropout increases with larger 
negative increments. In the other words, those patients who showed 
or would have shown a greater decrease in the overall level of the 
blood component from the previous time have a higher probability of 
dropout. This is said, given the fact that those patients who have a large 
improvement compared with the previous time and, a sudden shift in 
profile, are more likely to drop out of the study Table 5.

In terms of the significance of the drug effects, the corresponding 
p-values are displayed in Table 6. The p-values of the drug effects at 
the first point in time do not change much, it being significant in all 
three cases. However, for all cases, the p-values of the drug2 effects were 
not statistically significant. It is clear from the different dropout models 
that the drug effects do not differ to a large extent, the impact caused 
by drugs might be only on the dropout rate through their effects on 
the blood component. This is similar to the results from Diggle and 
Kenward [5] which stated that the drug effects should be made directly 
into the dropout model, either by using it as constants or allowing the 
relationship between dropout and outcome to differ between the drugs 
(Table 6).

Discussion
In this paper we have discussed the performance of the selection 

models based on Diggle-Kenward approach in terms of the analysis 
of longitudinal continuous measurements with incomplete data when 
there are dropouts missing not at random. We considered the use of 
the Diggle and Kenward [5] model as a tool to assess the sensitivity 
of a selection model with regard to the modeling assumptions. A 
model for repeated Gaussian measures, subject to a possibly MNAR 
assumption were considered. However, a monotone missing pattern 
was constructed in the model, that is, if a subject’s observation was 
missing for a particular time point, and then all subsequent data for 
that subject was also to be deleted. Similar to Diggle and Kenward [5], 
a selection models is specified that uses a logistic regression model to 
describe the dependency of missing data indicators on the longitudinal 
measurement. In particular, we have investigated the influence on 
inference that might be caused of the data by the dropout process. 
In doing so, we carried out an application for analyzing incomplete 
longitudinal data with dropout. The model was fitted by using an 
example from a multi-centre clinical trial data.

The application notably reveals that dropout increases with 
one element, i.e., large increments. This implied an occurrence of 
unfavorable values at the previous time. In fact, this case is, in practical 
terms, very common in fitting selection models of [5,8,32]. Our 
findings were similar to those of [8,33] in that the example followed 
in the study yielded parameter estimates for the dropout model that 
present different signs for current and previous observations, indicating 
the relationships between incremental changes and the probability of 
dropping out. The results further suggest that there is an evidence in 
favour of the prevalence of an MAR process rather than an MCAR 
process in the context of the assumed model. However, [5,8,18] advise 

one to take care in interpreting the evidence for such conclusions, using 
only the data under analysis.

On the other hand, when all the other modeling assumptions can 
be guaranteed to hold, the use of the LRT, in a well-defined sense, is 
inappropriate for hypothesis test for MNAR versus MAR [4]. This is 
certainly true for the model based on Diggle and Kenward [5] who 
investigated the tests of MAR null hypothesis against MNAR, but it 
is important to note that their tests are conditional on the alternative 
model holding. In practice, such a distinction can only be made 
using untestable modeling assumptions such a distributional form, 
see [12]. This problem is really laid bare in Verbeke et al. [26] which 
showed that for any MNAR model there exist an MAR model that 
fits the data equally well. Further, they stated that it is not possible 
to use fit of an MNAR model for or against an MAR model, unless 
one puts a priori belief in the posited MNAR model. In other words, 
as the original MNAR model, the MAR model can give the same 
estimates of predictions to the observed data, and depending on the 
same parameter vector. This in line with previous study conducted by 
Gill et al. [34]. For more discussions of examination the differences 
between an MNAR model and its MAR counterpart, we recommend 
[12,26] articles. Hence, it is broadly agreed that the role of such 
MNAR models is in sensitivity analysis that is if the assumptions are 
changed, the conclusions from the primary (typically MAR) analysis 
are also changed, as the nature of sensitivity comes due to the non-
verifiability in the MNAR model from the data. 

Finally, in line with previous studies, for example, [3,8,31,35], the 
selection model of Diggle and Kenward is viewed as a member of the 
sensitivity analysis framework. An alternative approach to modeling 
incomplete longitudinal data under a non-ignorable assumption 
has frequently been proposed in the literature are the pattern 
mixture models [23]. There is also what is known as (influence 
tools) to deal with incomplete longitudinal data with nonignorable 
missingness and these are useful for detecting subjects that cause 
non-ignorable dropout, as well as other subjects that lead to non-
random missingness. Here, we note that the scope of this study is 
limited to selection models based on Diggle-Kenward model, the 
other approaches are not included in this article. On the other hand, 
in order to assess sensitivity it is useful to obtain further insight into 
the data by comparing both the selection and the pattern mixture 
models, for instance, see, [31,35]. While it is not the focus of our 
current study, sensitivity analyses are an important issue of modeling 
incomplete longitudinal data and should be routinely conducted. To 
this end, special attention should go to the comparisons between the 
various sensitivity analysis frameworks.

Conclusions
Our findings from a non-systematic review for this study revealed 

that a majority of published literature on epidemiologic studies that 
used multivariable regression models have not mentioned anything 
related to testing for statistical interactions, effect modification, or 
heterogeneity of effect. Although calculation and interpretation of 
interactive effects are more difficult these are essential if the effects 
are interactive or synergic. We recommend inclusion of interaction 
terms that are clinically significant even if the interaction effects are 
not statistically significant. The failure to identify interactive effects 
in regression models could lead to significant bias, misinterpretation 
of the results, and in some instances to incorrect public health 
interventions with potential adverse implications.

p-value MCAR MAR MNAR

Drug 1 effect 0.0062 0.0061 0.002

Drug 2 effect 0.6002 0.6006 0.601

Table 6: Multi-centre data: p-values for drug effects under MCAR, MAR, and 
MNAR assumptions.
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