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Abstract

In this paper, the power of the recently introduced method of Akbari-Ganji has been validated by solving two
different nonlinear equations. In the first section, the temperature distribution model of a convective straight fin
is found by solving the governing energy balance equation with Akbari-Ganji's Method. The authenticity of this
method has been checked considering the fourth-order Runge-Kutta. In the second section, a linear differential
equation without enough boundary conditions is converted into a nonlinear differential equation with enough
boundary conditions by derivation. The precision of the AGM method has been compared with two other semi-
analytical methods. Results were prepared for the ultimate solution function and its first derivative in both sections.
The variational iteration method and the homotopy perturbation method were the ones which showed the lowest
and the highest error amounts, respectively. The AGM method is also considered as an acceptable method with
negligible error in solving different nonlinear equations.

Keywords: Rectangular convective fin; Akbari-Ganji’s method
(AGM); HPM; VIM; Fourth-order Runge-Kutta numerical method

Nomenclature: Ac: Cross-sectional area of the fin (m?); b: Fin
length; h: Heat transfer coefficient (W/m'K"); k: Thermal conductivity
of the fin material (W/mK"); ka: Thermal conductivity at the ambient
fluid temperature (W/m’K"); k: Thermal conductivity at the base
temperature (W/m'K); P: Fin perimeter (m); Q: Heat transfer rate (W);
Ta: Temperature of surface a (K); Tb: Temperature of surface b (K); x:
Distance measured from the fin tip (m); f: Dimensionless parameter
describing the thermal conductivity variation; 1: Fin efficiency; (:
Dimensionless coordinate; A: The slope of the thermal conductivity
temperature curve (K'); 1: Thermogeometric fin parameter; 6:
Dimensionless temperature; AGM: Akbari-Ganji’s Method; HPM:
Homotopy Perturbation Method; VIM: Variational Iteration Method

Temperature Distribution Solution inside the

Convective Straight Fin

In the study of heat transfer, fins are surfaces extending from an
object to increase the rate of heat transfer to or from the environment
by increasing convection. Increasing the temperature gradient
between the object and the environment, increasing the coefficient of
convection heat transfer, or increasing the surface area of the object
increases the heat transfer. Sometimes it is not feasible or economical to
change the first two options. Thus, adding a fin to an object increases the
surface area and can sometimes be an economical solution to heat transfer
problems. The sketch of the convective straight fin is depicted (Figure 1).

Analyzing the fin problem consists of two sections. One is based
on thermal convection through fin surface area and the other is based
in thermal conduction through fin cross section. The one-dimensional
energy balance equation governing the fin problem is as below:

d dT
Aﬁ[unﬂ—m@—n)—o M

A linear temperature function for the thermal conductivity of the
fin material is considered as below:
k(1) =k, [1+ A(T - T,)] 2

Where k and k are the thermal conductivity at the ambient
fluid temperature of the fin and the thermal conductivity variation,

respectively. Employing the following dimensionless parameters [1-2]:

172
T-T, x hPb’
0= “ ==, B=AMT,-T,), y=| — 3
Therefore, the governing equation will reduce to:
2 2 2
;d—€+ﬁ9d—f+ﬁ 40 —y*0=0 (4)
dg dg dg
The corresponding boundary conditions are as below:
do
=220, £=0
dg (5)
0=1 ¢ =1
Th . = AC
T b
Figure 1: The sketch of the rectangular convective straight fin under discussion.
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The heat transfer dissipation rate from the fin is expressed as below
according to the Newton’s law of cooling:

0=[P(T-T,)dx ©)

The fin efficiency which is defined as the ratio of actual heat transfer
from the fin surface to the other side while the whole fin surface stays
at the same temperature:

_o _Lrr-T ;
" Oieat - Pb(T,-T,)) - gzog(g)dé’
AGM approach

Description of the method: To elucidate on, consider the nonlinear
differential equation p that is a function of the parameter u (a function
of x) and its derivatives as below:

Di :f(u, u..., u(”’)): 0; u=u(x) (8)
The corresponding boundary conditions are as below:

{u(O) =1y, W(0)=uy, o, u"(0)=u,_,

)
u(L)=u,, wLy=u,, ..., u™ (L) = u,

In order to solve the first differential equation with respect to
the boundary conditions in x=L (Eq. 9), the corresponding answer is
considered as follows:

u(x)=lim, 2:7:0 ax =lim, _(a,+ax' +a,x’ +..+ax") (10)

By means of increasing the number of series in Eq. 10, the obtained
solution is closer to the real answer and shows more precision.
Approximately, five or six sentences are enough for obtaining answers
with negligible errors in applied problems. The boundary conditions
are applied to the functions as below:

a) The application of the boundary conditions for the answer of
differential Eq. 11 is in the form of:

If x=0

u(0)=a, =u,

W (0)=a,=u, (1n)
And if x=L

b (12)

wl)=a,+aL+a,l’ +..+al =u
u'(L)=a,+2a,L+3a,’ +..+na,L'" =u,

b) After substituting Eq. 12 into Eq. 8, the boundary conditions are
applied on Eq. 8 according to the procedure below:

o+ [ (1(0), 0(0)....u™(0))
P f (u(@), W(D)...u™ (L))

With regard to the choice of n; n<m sentences from Eq. 10 and in
order to make a set of equations which is consisted of (n+1) equations
and (n+1) unknowns, we confront with a number of additional
unknowns which are indeed the same coefficients of Eq. 10. Therefore,
to remove this problem, we should derive m times from Eq. 8 according
to the additional unknowns in the afore-mentioned sets of differential
equations and then applying the boundary conditions on them.

(13)

[ ! " _.m (m+1)
oo f (u, u’u”,...u )

(14)
pn . f"(u", um’.“’u(m+2))

b) Application of the boundary conditions on the derivatives of the
differential equation P, in Eq. 14 is done in the form below:

' f(u'(O),u"(O),u"’(O), o ,u(/n+l) (0))
Py (15)
fw (L) (L)um (L), ...,u"" (L))

£ (w"(0),u"(0), .....u""? (0))
£(w(L)um (L), . w2 (L))

(n+1) equations can be made from Eq. 11-16 so those (n+1)
unknown coefficients of Eq. 10, a;, a,, a,, ... a_can be computed. The
answer of the nonlinear differential Eq. 8 will be obtained by computing
coefficients of Eq. 10 [3-11].

(16)

Applying AGM to the given equation: The answer of the energy
balance equation governing the fin problem can be considered as a
finite series of polynomials with constant coefficients:

9 d0  (doY s
+ 36 +8 = | —yp?0=0, 0O)=> a.l’ (17)
i ﬂ(dé,J v =Y as

The aforementioned unknown coefficients are capable of being

computed by applying the boundary conditions.

a) Applying the boundary conditions on Eq. 17:
0
dg

0(¢=1)=1>a,+a,+a,+a,+a,+a,=1 (19)

(¢=0)=0->4=0 (18)

b) Applying the boundary conditions on the main differential Eq.
4 and its derivatives:

0(6(£)) - U (6(B.C))=0,U"(6(B.C))=0,... (20)
U0)=0- Ba’-w’a, +2a,=0
U(1)=0—20a, +12a, +6a, +2a, + f(20a +12a, + 6a, +2a,) + 1)
B(Sa, +4a, +3a,+2a, +a,)’
-y’(as+a,+a,+a,+a)=0
U, =0—4paa, -y’ a, +2fa, +6a,=0
U, =1— 60a, +24a, +6a, + f(20a, +12a, + 6a, +2a,) (22)
+ B(60a +24a, +6a,)’ +2B(5a, +4a, +3a, +2a, +a,)
(20a, +12a, + 6a, +2a,)-w*(5a, + 4a, +3a, +2a, +a) =0

By solving a set of algebraic equations, six unknown coefficients
are computed according to the existing six equations. By entering
the values of the coefficients, the ultimate answer of AGM method is
obtained [12-20].

Results

The Temperature Distribution tables and figures are depicted
below for two cases in which the dimensionless parameter B describing
variation of thermal conductivity is considered zero which corresponds
to a constant thermal conductivity through the fin’s material (Tables 1
and 2; Figures 2 and 3).

We compared the results of the AGM approach with an accurate
numerical solution, using fourth-order Runge-Kutta with absolute
error of le-10 as demonstrated in Tables 1 and 2; for two cases of
¥=0.5 and W=1 with $=0. An excellent agreement between the results
is observed which confirms the validity of the AGM approach [3].
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Figure 2: Comparison of the solutions via AGM and the fourth-order Runge-
Kutta for ©(¢)-p=0, y=0.5
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Figure 3: Comparison of the solutions via AGM and the fourth-order Runge-
Kutta for ©6(¢)-p=0, y=1.

B=0, ¢=0.5

¢ AGM Numerical Error

0 0.648414986 0.648054499 0.000360487
0.1 0.651659539 0.651297468 0.000362071
0.2 0.661423401 0.661058833 0.000364568
0.3 0.677799078 0.677436294 0.000362783
0.4 0.700944784 0.700593758 0.000351026
0.5 0.731087896 0.730762995 0.000324901
0.6 0.768528415 0.768245949 0.000282466
0.7 0.813642421 0.813417762 0.000224659
0.8 0.866885533 0.866730522 0.000155011
0.9 0.928796369 0.928717806 7.86E-05

1 1 1 0

Table 1: The results of AGM and the fourth-order Runge-Kutta for ©(Q).

Validation of the AGM Approach Considering an
Ordinary Differential Equation
In this section, we consider the following differential equation and

solve it by HPM, VIM and AGM semi-analytical approaches to analyze
the precision of AGM.

f df
h(x);—5 e

In this problem, the number of boundary conditions is one more

than the order of the presented equation. The given equation should be

derived so that the number of boundary conditions and the order of the
differential equation will be equaled. Therefore, we will have:

df df

+f + = (23)

df+4f3;’l:0 (24)
X

The corresponding boundary conditions are as below:

fO)=0, /=1 71)=0 (25)

Applying HPM approach to the given equation

Considering Eq. 23 and 24, we construct the homotopy function
as below:

Fle.p)=(1- p)[”’f] p[f,{ ‘;x{ ff+4f3df] 0o (26

Assuming f(x) as a summation of a power series of parameter p,
we will have:

fG)=Y P () (27)

Substituting Eq. 27 into Eq. 26 and rearranging the answer by
powers of p, the multipliers of each power are obtained. Solving the
obtained answers according to the given boundary condition which is
constant for all of them, the consecutive terms of HPM solution are
gained:

f(x) = x*+2x (28)
f(x) —Lx“’+lxg+§xg+E YA x°
90 9 7 21 30 (29)
+fx5—1x"+1x3 2 o 23
5 3 315 3157

3
2 5 43 o, 428

1 18
X)=————x + x x
£ 6885 765 2100 4725

14081 1, 341 5 169 ,, 12731
X +— =+ X

57330 819" 378" "34650

32 4, 509 , 809 . 533 ,
+—x ————x "+ x’+

81 1134 2940 13230

1 . 61 5 223 , 2

(30)

x”+ x X' ———=x"+
1890 1050 3780 945
456325 N 7498577 X
12864852 482431950

The answers of the next terms and the ultimate answer of Eq. 25 are
presented in Appendix 1.

Applying VIM approach to the given equation

To apply the construction of the variational iteration method, we
have to find the first sentence to start the loop.

By considering the linear sentence with maximum power of
derivative o which is also the multiplier of power p° in HPM

method) and applying the corresponding boundary conditions, f,(x)
can be found.
7/‘( )+—f(x)+2f(x)( f(x))+4/(x)3( dxf(x))=0

—9 > fi(x)=—x"+2x (31)
fO)=0,/D)=L1)=0

Based on the structure of VIM method, we construct the following
formulation:

S (¥) = f,',(X)+/UU[ L@+ f,,(T)+2f,,(T)( fn(T)j

4, (@) [d%mr)]]drj

Considering an adequate Lagrange multiplier and setting n from
0 to 3, four terms of f{x) are calculated, the last cycle of this answer is
known as the ultimate solution of the given equation.

(32)

f(x)—fx poxmtyog Ly 3 100 Ve 1y Lu p (33)
90 9 7 21 30 5 3
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The answers of the next terms and the ultimate answer of Eq. 25 are
presented in Appendix 2. 12
Applying AGM approach to the given equation 1 o
‘/
We first consider the given equation in the form below: 08 ;f
& & d ;[ d J S 06 &
U: — — f(x)+2 - 4f(x)| — =0 34 ~
prrASaere RS f(X)(dxf(X)j+ S| 5 /@ (34) 0 /
As it was discussed in the previous section, the answer of the 02 /
differential equation is considered as a finite series of polynomials with ' Yy
constant coefficients: 0 /
. . 0 0.2 0.4 0.6 0.8 1 1.2
f(x)= Zj:o a,.x' =a,+ax"+a,x* +a,x’ +ax* +ax’ (35) amemm HP|\V| Numerical X

The aforementioned unknown coefficients are capable of being
computed by applying the boundary conditions.

a) Applying the boundary conditions on Eq. 36:
f(0)=0—4a,=0 (36)
fO=1>a,+a +a,+a,+a,+a,=1 (37)

b) Applying the boundary conditions on the main differential Eq.
35 and its derivatives:

U(f(x))>U(f(BC))=0, U'(f(BC))=0.... (38)
U(r(0).r(1)= {ZE?)):S — 4aja, +2a,a, +2a, +6a, =0 (39)

80as +36a, +12a, +2a, +2(a5 +a,+a,+a,+a +a0)
(5a;+4a, +3a, +2a, +a,)+4(as +a, +a, +a, +a, +a,) (40)
(Sa5 +4a, +3a, +2a, +a1):0

U'(0)=0

U'=0 —8aya, +12a,al +4a,a, +2a; +6a, +24a, =0 (41)

U’(/‘(O)J‘(l)):{
180a, +48a, +6a, +2(5a; +4a, +3a, +2a, +4,) +

2(a;+a, +a,+a,+a,+a,)(20a, +12a, +6a, +2a, )+
(42)
12(a5 +a,+a,+a, +al)2(5a5 +4a4+3a3+2az+al)z+

4(as+a, +a,+a,+a,+a,) +(20a,+12a, +6a, +2a,) =0
By solving a set of algebraic equations, six unknown coefficients
are computed according to the existing six equations. By entering

the values of the coefficients, the ultimate answer of AGM method is
obtained.

Analogy between the methods is shown in Tables 3-6; Figures 4-15.
Conclusion

In this paper, we have successfully developed semi-analytical
methods HPM, VIM & AGM to compute the given equation. We
have utilized the Maple Package for our calculations. AGM & HPM
methods were the most precise methods in this matter, so that they can
be applied to the numerous questions arising in the fields of science
and engineering day in day out [20-26].

Appendix 1

Description of the HPM approach: To elucidate on, consider the
following equation:

Aw)-f(r)=0reQ (43)

Figure 4: Comparison of HPM and the numerical method for f(x).
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Figure 5: Comparison of VIM and the numerical method for f(x).
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Figure 6: Comparison of AGM and the numerical method for f(x).

The boundary conditions are:

B(u,g—uj=0;rel“ (44)

n

A: General differential operator, B: Boundary operator, f(r): Known
analytical function

I" : Boundary of the domain Q

The operator A consists of linear and nonlinear parts, so the Eq. 1
can be rewritten in the form below [3,5]:

L)+ Nw)—-f(r)=0reQ (45)

Lw)+Nu)-f(r)=0reQ
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Figure 7: Comparison of HPM, VIM, AGM and the numerical method for f(x).
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Figure 8: Comparison of HPM and the numerical method for f(x).

/

-

1.2

B=0, y=1

¢ AGM Numerical Error

0 0.886827894 0.886818904 8.99E-06
0.1 0.887936656 0.887927655 9.00E-06
0.2 0.891265668 0.891256693 8.98E-06
0.3 0.896823156 0.896814335 8.82E-06
0.4 0.904622907 0.904614478 8.43E-06
0.5 0.914684345 0.914676629 7.72E-06
0.6 0.927032599 0.927025948 6.65E-06
0.7 0.941698575 0.941693312 5.26E-06
0.8 0.958719023 0.958715403 3.62E-06
0.9 0.978136613 0.978134783 1.83E-06

1 1 1 9.99E-16

Table 2: The results of AGM and the fourth-order Runge-Kutta for ©(7).

L: Linear part, N: Nonlinear part

The introduced structure of homotopy perturbation method is as

below:

H(v, p) == p)L(v)—L(v)]+ plA(v) - f()]=0 (46)
While,
v(r, p): QX[0,1]> R (47)

p€[0,1]: An embedding parameter, tg: First approximation

satisfying the boundary condition

If the equation (4) be rewritten as a power series in p as below:

V=y,+pv +p2V2 (48)

The best approximation of the solution is considered as below:

u=lim

P>

V=Ev v+, (49)

Answer terms of the HPM approach to the Problem 2:

45391772903 24547 . 215183 . 30009089
3717560741875 5542425 10319400 438574500
266716803 ., 2486051657 ,, 1503854581 . 182146189 .,
16665831000 9166207050 4341887550 482431950
15042559 19616641 i, 61279531, 377021 ,
37837800 ' 425675250 158918760 ' 1719900
336601 L, 206711 ,, 1467612833 , 10777231
2619540 1559250 14472958500 868377510
204740047, 8932307 133508, 1028171
4502698200 241215975 19348875 321621300
(1016179, 431504330859 ., 456325 . T
192972780 | 60371972797500" 38394556 3442500
ol L, 9239
1721250 14779800

fi(x) =

(50)

2.5
2 '

15 R -
1 BN

05 =

f'x)

0 v

0 0.2 0.4 0.6 0.8 1 1.2
-0.5

JEYTY X

Numerical

Figure 9: Comparison of VIM and the numerical method for f/(x).

fx)
X HPM vIM AGM Numerical
0 0 0 0 0
0.1 0.181728983 = 0.190293926 0.1886 0.181730225
02 034588862 = 0.36205851 @ 0.357 0.345891022
03 0493193118 0.515992529 ' 0.5059 0.493196085
04 0623637046 = 0.651986985 0.6358 0.623639949
05 0736564905 = 0.769194539  0.7464 0.736567288
06 0.830836697 = 0.866221325 0.8376 0.830838346
07 0.905118449  0.941472686  0.9083 0.90511938
08 0958272246 = 0.993612536 0.9587 0.958272631
09 0.989767158 = 1.022026176 = 0.9897 0.989767241
1 1000000004  1.027139019 1 1

Table 3: Comparing the obtained charts by HPM, VIM, AGM and the numerical
approach for f(x).

f'(x)

/
/

0 0.2 0.4 0.6 0.8 1 1.2
- A\GV Numerical X

Figure 10: Comparison of AGM and the numerical method for f/(x).
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Appendix 2

Description of the VIM approach: To clarify, note the equation
below:

A(u) = g(x), A(w) = L(u) + N(u) (53)

Where L & N represent the linear and nonlinear parts of the
general differential operator A. g(x) is the inhomogeneous term of the

25

agm
— = === hpm
N
L. .
— | )
numerical

12

X

X

Figure 13: Comparison of HPM, VIM and AGM approaches for their f(x)-
maximum errors percent.

Figure 11: Comparison of HPM, VIM, AGM and the numerical method for f(x).

f(x)-Maximum |Error|

x HPM VIM AGM

0 0 0 0
0.1 1.24E-06 0.008563701 0.006869775
0.2 2.40E-06 0.016167488 0.011108978
0.3 2.97E-06 0.022796445 0.012703915
0.4 2.90E-06 0.028347035 0.012160051
0.5 2.38E-06 0.032627251 0.009832712
0.6 1.65E-06 0.035382979 0.006761654
0.7 9.31E-07 0.036353306 0.00318062
0.8 3.86E-07 0.035339905 0.000427369
0.9 8.31E-08 0.032258935 6.72E-05

1 4.00E-09 0.027139019 0

Table 4: Comparing the obtained charts by HPM, VIM and AGM for their f(x)-errors
in accordance to the numerical approach.

F(x)

X HPM VIM AGM Numerical

0 1.909404547 2 2.0025 1.909413569
0.1 1.727633922 1.808441316 1.7894 1.727647369
0.2 1.556743091 1.628011282 1.5901 1.556752052
0.3 1.389328156 1.450478213 1.3971 1.389330476
0.4 1.218431025 1.267967474 1.2034 1.218427709
0.5 1.03817714 1.0738019 1.0077 1.03817046
0.6 0.844968441 0.863996832 0.80784 0.844960853
0.7 0.638698783 0.638722634 0.6042 0.638692269
0.8 0.423436239 0.402993554 0.3987 0.423431972
0.9 0.207100456 0.165978303 0.19825 0.20709865

1 -0.000000009 -0.061143663 | 0.0077515 0

Table 5: Comparing the obtained charts by HPM, VIM, AGM and the numerical
approach for f ‘(x).
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equation. The introduced structure of the VIM method is as below [3]: F’(x)-Maximum |Error]|
x X
1, () =1, () + [ (L, () + Nu, (7) - g()) dr (54) HPM vim AGM
) 0.1 9.02E-06 0.090586431 0.093086431
A is the general Lagrange multiplier which can be obtained by 0.2 1.34E-05 0.080793947 0.061752631
disparate ways including variational theory, Laplace method and 03 8.96E-06 0.07125923 0.033347948
. th . . . : : : :
etc. the subs.crlpt n jePre':sen.ts the n™ approximation of the SOll.l'[lOIl, 04 2 32E-06 0.061147737 0.007769524
The appellation of «, is justified by the fact thatsu, = 0. The ultimate
. L. 0.5 3.32E-06 0.049539765 0.015027709
solution is given as:
0.6 6.68E-06 0.03563144 0.03047046
u(x)=lim, _ u,(x) (55) 0.7 7.59E-06 0.01903598 0.037120853
Answer terms of the VIM approach of Problem 2: 0.8 6.51E-06 3.04E-50 0.034492269
0.9 4.27E-06 0.020438418 0.024731972
2 YL U N . LA BN TR ) S O S 1 1.81E-06 0.041120346 0.00884865
3 311850 17325 1492627500 447788250
B 902149 oy 154157 T 153389 et 7631233 s Table 6: Comparing the obtained charts by HPM, VIM and AGM for their f(x)-errors
1130033835000 29737732500 5907360375 74388982500 in accordance to the numerical approach.
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