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Abstract 
Akbari-Ganji’s Method (AGM) to study an unsteady nonlinear convective-radiative equation and a nonlinear 

convective-radiative-conduction equation containing two small parameters of ε1 and ε2 and evaluate the efficiency 
of straight fins. The concept of Akbari-Ganji’s Method is briefly introduced and employed to derive solution 
of nonlinear equation. The obtained results from AGM are compared with those of obtained from Homotopy 
Perturbation Method (HPM), the fourth-order Runge-Kutta Numerical Method (NUM) and FlexPDE software to 
verify the accuracy of the proposed method. Results show by increasing N efficiency decline. In contrast to, with 
increasing of ε1, ε2 the value of efficiency increases. In addition to, this study shows that AGM is powerful method 
to solve nonlinear differential equations, such as the problem raised in this research.

Keywords: Heat transfer; Homotopy Perturbation Method; Akbari-
Ganji’s Method; FlexPDE software; Nonlinear equation; Strait fin

Introduction
Most of scientific phenomena and problems especially in 

engineering occur nonlinearly. Heat transfer equations in straight 
surfaces, are one most applicable of them. One of these surfaces is 
straight fins. Fins are the most effective instrument for increasing the 
rate of heat transfer. As we know, they increase the area of heat transfer 
and cause an increase in the transferred heat amount. A full review 
on this topic is presented by Krause et al. [1]. Fins are widely used 
in many industrial applications like air conditioning, refrigeration, 
automobile, chemical processing equipment and electrical chips. Aziz 
and Hug [2] used the regular perturbation method to obtain a closed 
form solution for a straight convecting fin by temperature dependent 
thermal conductivity. Razani and Ahmadi [3] considered circular fins 
with a nonlinear temperature-dependent thermal conductivity and 
an arbitrary heat source distribution and obtained the results for the 
optimum fin design. Yu and Chen [4] assumed that the linear variation 
of the thermal conductivity and exponential function with the 
interval of the heat transfer coefficient and then, solved the nonlinear 
conducting-convecting-radiating heat transfer equation with the 
differential transformation method. Furthermore, Bouaziz and Aziz 
[5] introduced a double optimal linearization method (DOLM) to
get a simple and accurate solution for the temperature distribution
in a straight rectangular convective–radiative fin with temperature-
dependent thermal conductivity. Bouaziz et al. [6] presented the
efficiency of longitudinal fins with temperature-dependent thermo-
physical properties. Also, the effects of temperature-dependent thermal 
conductivity of a moving fin and added radiative component to the
surface heat loss have been studied with Aziz and Khani [7]. Ghasemi
et al. [8] solved the nonlinear temperature repartition equation in a
longitudinal fin with temperature dependent internal heat generation
and thermal conductivity using Differential Transformation Method
(DTM). Many different methods have recently introduced to solve
nonlinear problems such as Optimal Homotopy Analysis Method
(OHAM) [9], Homotopy Analysis Method (HAM) [10-12], Homotopy 
Perturbation Method (HPM) [13-14], Least Square Method (LSM)
[15], Differential Transform Method (DTM) [16], Variational Iteration 
Method (VIM) [17] and Adomian’s Decomposition Method (ADM)
[18], many methods are not considered in this study because of brevity. 

Akbari-Ganji’s Method (AGM) is a new method that be used for 
investigation of nonlinear problems. A summary of AGM advantages 
compared to other methods is as below: Boundary conditions are 
needed in accordance with the order of differential equations in the 
solution method but when the number of boundary conditions is less 
than the order of the differential equation, this approach can engender 
additional new boundary conditions in regard to the own differential 
equation and its derivatives. Hence, AGM is a powerful method for 
solving the nonlinear differential equations such as presented equation 
in this paper. In the present study, we have applied AGM to find the 
approximate solutions of nonlinear heat transfer equation in a straight 
fin. The comparison of the results of AGM, Homotopy Perturbation 
method (HPM), the fourth-order Runge-Kutta numerical Method 
(NUM) and FlexPDE software results shows excellent complying in 
solving this nonlinear problem.

Description of the problem
 The example to be studied is the one-dimensional heat transfer in 

a straight fin with the length of L and the cross section area of A and the 
perimeter of P (Figure 1).The fin surface transfers heat through both 
convection and radiation. Suppose the temperature of the surrounding 
air is T0 and the effective sink temperature for the radiative heat transfer 
is TS. We assume that base temperature of the fin is Tb and there is no 
heat transfer of the tip of the fin. It is also assumed that the convection 
heat transfer coefficient h, and the emissivity coefficient of surface, Eg 
are both constant while conduction coefficient, k, can be variable.

The energy equation and the boundary conditions for the fin are 
as follows:
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4 4( ) ( ) ( ) 0,g
a s

Ed dT hPk T T T T
dx dx A A

σ
− − − − =                    (1) 

0 0, b
dTx x L T T
dx

= → = = → =                (2)

Assuming k as a linear function of temperature, we have:

(1 ( )),a ak k T Tβ= + −     (3)

After making the equation dimensionless and changing parameters, 
we have:

2
2
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2

, , , , , ,
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a s
a s B

b b b a

g b

a

T TT x hPLX N T
T T T L k A
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k A

θ θ θ ε β

σ
ε

= = = = = =

=

  (4)

And substituting Eq. (6) in Eq. (3) we have:

[ ] 2 4 4
1 21 ( ) ( ) ( ) 0,a a s

d d N
dX dX

θε θ θ θ θ ε θ θ + − − − − − = 
 

            (5)

0 0, 1 1dX X
dX
θ θ= → = = → =                    (6)

By assuming θa = θs = 0 we have:
2 2

2 2 4
1 1 22 2( ) ( ) 0.d d dN

dX dX dX
θ θ θθ ε ε θ ε θ− + + − =    (7)

Fin efficiency the heat transfer rate from the fin is found by using 
Newton’s law of cooling

0

( ) .
B

aQ p T T dx= −∫                    (8)

 The ratio of the actual heat transfer from the fin surface to that, that 
would transfer if the whole fin surface were at the same temperature as 
the base is commonly called as the fin efficiency

1
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0
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( )
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Q p T T dx
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Q Pb T T
η θ

=

= −
= = =

−

∫
∫

 		                        (9)

Mathematical Procedures
In this section two methods have been examined:

Akbari-Ganji’s Method (AGM) 

Boundary conditions and initial conditions are needed differential 
equation according to the physic of the problem. So, we can solve any 
differential equation with every degrees. In order to comprehend the 
given method in this research, two differential equations ruling on 
engineering processes will be solved in this new manner. The nonlinear 
differential equation of p which is a function of u, the parameter u 
which is a function of x and their derivatives are considered as follows:

The nonlinear differential equation P (which is a function of u), 
the parameter u (which is a function of x), and their derivatives are 
considered as follow:

: ( , , ,....... ) 0 ; ( ),m
kp f u u u u u u x′ ′′ = =     (10)

Boundary conditions:
( 1)

0 1 1
( 1)

0 1 1

(0) , (0) ,....... (0)

( ) , ( ) ,........ ( )

m
m

m
L L Lm

u u u u u u
u L u u L u u L u

−
−

−
−

′ = = =


′= = =
  (11)

To solver the first differential equation, with respect to the 
boundary conditions in x = L in Eq. (11), the series of letters in the 
nth order with constant coefficients, which is the answer of the first 
differential equation, is considered as follows: 

1 2
0 1 2

0
( ) lim lim( ........ ),

n
i n

i nn ni
u x a x a a x a x a x

→∞ →∞=

= = + + +∑                (12)

The boundary conditions are applied to the function as follows:

a) The application of the boundary conditions for the answer of
differential Eq. (12) is in the form of

If x=0

0 0

1 1

2 2

(0)
(0)
(0)

: : :
: : :

u a u
u a u
u a u

= =
 ′ = = ′′ = =


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                (13)

And when x = L

0
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
′ = + + + + =


′′ = + + + + − =
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

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    (14)

b) After substituting Eq. (14) into Eq. (10), the application of the
boundary conditions on differential Eq. (10) is done according
to the following procedure:

( )
0

( )
1

: ( (0), (0), (0),........ (0))

: ( ( ), ( ), ( ),........ ( ))
: : : : :
: : : : :

m

m

p f u u u u
p f u L u L u L u L

′ ′′

′ ′′    (15)

With regard to the choice of n; (n < m) sentences from Eq. (12) 
and in order to make a set of equations which is consisted of (n + 
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Figure 1: (a) Geometry of a strait fin (b) x-y view.
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1) equations and (n + 1) unknowns, we confront with a number of
additional unknowns which are indeed the same coefficients of Eq. (12). 
Therefore, to remove this problem, we should derive m times from Eq.
(10) according to the additional unknowns in the afore-mentioned set
differential equations and then this is the time to apply the boundary
conditions of Eq. (11) on them.

( 1)

( 2)

: ( , , ,...... )

: ( , , ,...... )
: : : :
: : : :

m
k

IV m
k

p f u u u u

p f u u u u

+

+

′ ′ ′ ′′ ′′′

′′ ′′ ′′ ′′′                   (16)

Application of the boundary conditions on the derivatives of the 
differential equation Pk  in Eq. (16) is done in the form of

( 1)

( 1)

( (0), (0), (0),......, (0) )
:

( ( ), ( ), ( ),......, ( ) )

m

k m

f u u u u
p

f u L u L u L u L

+

+

′ ′ ′′ ′′′′ 
′ ′ ′′ ′′′

             (17)

( 2)

( 2)

( (0), (0),......, (0) )
:

( ( ), ( ),......, ( ) )

m

k m

f u u u
p

f u L u L u L

+

+

′′ ′′ ′′′′′ 
′′ ′′ ′′′

   (18)

The (n+1) equations can be made from Eq. (13) to Eq. (18) so that 
(n+1) unknown coefficients of Eq. (12) for example a0,a1,a2,a3...an, can 
be computed. The answer of the nonlinear differential Eq. (10) will be 
gained by determining coefficients of Eq. (12).

Homotopy Perturbation Method (HPM) 

To explain the basic ideas of this method, we consider the following 
nonlinear differential equation:

( ) ( ) 0, ,A u f r r− = ∈Ω                   (19)

With the boundary condition of:

( , ), ,uB u r
n
∂

∈Γ
∂

               (20)

Where A is a general differential operator, B a boundary operator, 
f(r) a known analytical function, (Γ ) is the boundary of the domain 
(Ω) and ( /u n∂ ∂ ) denotes differentiation along the normal drawn 
outwards from (Ω). 

A can be divided into two parts which are L and N, where L is linear 
part and N is nonlinear part. Eq. (19) can therefore be rewritten as follows:

( ) ( ) ( ) 0,L u N u f r+ − =  				                 (21)

Homotopy perturbation structure is shown as follows:

0 0( , ) ( ) ( ) ( ) ( ( ) ( )) 0,H p L L u pL u p N f rν ν ν= + + + − =  	                (22)

Where,

( , ) : [0,1] ,r p Rν Ω× →               (23)

In Eq. (22), p∈ [0, 1] is an embedding parameter and u0 is the first 
approximation that satisfies the boundary condition. We can assume that 
the solution of Eq. (22) can be written as a power series in P, as following:

2
0 1 2 ...p pν ν ν ν= + + +                 (24)

and the best approximation for solution is:

1 0 1 2lim ...pu ν ν ν ν→= = + + +                (25)

Application of described methods in the problem
Akbari-Ganji’s Method (AGM)

First of all we rewrite the problem Eq. (7) in the following order:
2 2 4

1 1 2( ) 0H x Nθ θ ε θ ε θθ ε θ′′ ′ ′′= − + + − =                    (26)

In AGM, the answer of the differential equation is considered as a 
finite series of polynomials with constant coefficients, as follows:

5
2 3 4 5

0 1 2 3 4 5
0

( ) ,k
k

k
x c x c c x c x c x c x c xθ

=

= = + + + + +∑                  (27) 

The given answer function has the constant coefficients c0 to c5 
which can easily be computed by applying the initial conditions from 
Eq. (6). It is notable that the more numbers of series sentences of Eq. 
(27), the more precise the answer, and the answer is tended to the 
exact solution [19]. For example, solving to differential Eq. (7) by used 
Akbari-Ganji’s Method with (N=1, ε1=0, ε2=0.2).

In AGM, the boundary conditions are applied in two ways:

a) Applying the boundary conditions on Eq. (27) is expressed as
follows:

( ),BCθ θ=               (28)

So the boundary conditions are applied with respect to Eq. (28) as 
follows:

5 4 3 2 1 0( 1) 1 = 1c c c c c cθ + = → + + + + + +    (29)

1(0) 0 = 1cθ ′ = →

b) Boundary conditions are applied on Eq. (26), shown by H (x),
and also on their derivatives as

( ( )) ( ( )) 0, ( ( )) 0,...H x H BC H BCθ θ θ′→ = =               (30)

Eq. (30) means that the answer functions are substituted into the 
set of Eq. (26) instead of the dependent parameter θ, and then the 
boundary conditions are applied on them as follows:

3 2 5 4 3 2 2 5 4
1 5 1 4 1 3 2 1 5 1 4 1 3 1 2 1 0 1 5 1 4

3 2 2 4
1 3 1 2 1 0

( (0)) 20 12 6 2 0.2(

) 0,

H c c c c c c c c c c c c c c c c c c c c c
c c c c c c
θ ′ = + + + − − − − − − − +

+ + + + =
 (31) 

3 2
5 4 3 2 1 0 5 5 4 3 2 1 0 4 5 4

5 4
3 2 1 0 3 2 5 4 3 2 1 0 5 5 4 3 2 1 0 4

3 2
5 4 3 2 1 0 3 5 4 3 2 1 0 2 5 4 3 2 1 0 1

( (1)) 20( ) 12( ) 6(

) 2 ( ) ( )

( ) ( ) ( )

H c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c c c c c c

c

θ = + + + + + + + + + + + + +

+ + + + + − + + + + + − + + + + +

− + + + + + − + + + + + − + + + + +

− 5 4
0 5 4 3 2 1 0 5 5 4 3 2 1 0 4 5 4 3 2 1

3 2 4
0 3 5 4 3 2 1 0 2 5 4 3 2 1 0 1 0

0.2(( ) ( ) (

) ( ) ( ) )

c c c c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c c
− + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

  (32) 

Applying the boundary conditions on the derivatives of the set of 
differential equations is done in the following forms:

( )
2 4 3 2 5 4
1 5 1 4 3 1 5 1 4 1 3 1 2 1 1 5 1 4

3 2 2 3 4 3 2
1 3 1 2 1 0 1 5 1 4 1 3 1 2 1

( (0)) 60 24 6 5 4 3 2 0.8(

) 5 4 3 2 0,

H c c c c c c c c c c c c c c c c c c

c c c c c c c c c c c c c c c

θ′ ′ = + + − − − − − − + +

+ + + + + + + =
    (33) 

2
5 4 3 2 1 0 5 5 4 3 2 1 0 4 3

4 3
5 4 3 2 1 0 5 5 4 3 2 1 0 4 5 4 3 2

2 5
1 0 3 5 4 3 2 1 0 2 1 5 4 3 2 1 0 5

5 4 3 2

( (1)) 60( ) 24( ) 6

5( ) 4( ) 3(

) 2( ) 0.8(( )

(

H c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c c c

c c c c c c c c c c c c c c c c c c
c c c c

θ′ = + + + + + + + + + + + +

− + + + + + − + + + + + − + + +

+ + − + + + + + − − + + + + +

+ + + + + 4 3 2
1 0 4 5 4 3 2 1 0 3 5 4 3 2 1 0 2

3 4
5 4 3 2 1 0 1 0 5 4 3 2 1 0 5 5 4 3 2 1

3 2
0 4 5 4 3 2 1 0 3 5 4 3 2 1 0 2 1

) ( ) ( )

( ) ) (5( ) 4(

) 3( ) 2( ) ) 0.

c c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c c c c c

c c c c c c c c c c c c c c c c c

+ + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + =

 (34) 

By solving a set of algebraic equations which is consisted of six 
equations with six unknowns from Eq. (29) and Eqs. (31)- (34), the 
constant coefficients of Eq. (27) can easily be gained.

0 1 2

3 4 5

0.6350622431, 0, 0.3337965375,
0, 0.01130218291, 0.01983903651

c c c
c c c
= = =

 = = =
(35)
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By substituting the achieved constant coefficients into Eq. (27), 
the solution of the set of nonlinear differential equation is gained as 
follows:

5 4 2( ) 0.01983903651 0.01130218291 0.6350622431 0.3337965375x x x xθ = + + +  (36)

Homotopy Perturbation Method (HPM)

In this section, we will apply the HPM to nonlinear ordinary 
differential Eq. (7). According to the HPM, we construct a homotopy 
suppose the solution of Eq. (7) has the form:

( )
2 2

2 2
2 2

2
2 4

1 1 22

d d, (1 )( ( ) ( )) ( ( ) ( )
d d

d d( ( )) ( )( ( )) ( ) ),
d d

H p p x N x p x N x
x x

x x x x
x x

θ θ θ θ θ

ε θ ε θ θ ε θ

= − − + −

+ + −

                   (37)

We consider θ(x) as follows:

0 1
0

( ) ( ) ( ) .( ) . .
m

i
i

i
x p x x p xθ θ θ θ

=

= = + +∑     (38)

Substituting Eq. (38), into Eq. (37), and some simplification and 
rearranging on powers of P- terms, we have:

( ) ( )

0

2
2

0 02

:
d 0,
d

p

N x x
x

θ θ− + =
             (39)

And boundary conditions are:

0

0

0: =0,
1: 1,

η θ
η θ

′=
= + =

                 (40)

2
1 4 2

2 0 1 1 0 02

2
2

1 0 12

d: ( ) ( ) ( )( ( ))
d

d d( ( )) ( ) 0,
d d

p x N x x x
x

x x
x x

ε θ θ ε θ θ

ε θ θ

− − +

+ + =

   (41)

And boundary conditions are:

1

1

0: =0,
1: 0,

η θ
η θ

′=
= + =

              (42)

Solving Eqs. (40) and (41) with boundary conditions:

0
e e( ) ,

e e e e

Nx Nx

N N N Nxθ
−

− −= +
+ +

              (43)

2 10 2 8 2 6 2 4 2 2
1 1 1 1 1 1

10 8 6 4 2 2 2 8 8 1 6
2 2 2 2 2
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1 20 90 20 1 ) ) / ( ( 4

4 6 6 4 4 )) (0.0067 (1
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N N N N N N N N N N N N Nx
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e e e e e e N e e e e e e

e e e e e e e e e e e e e

θ ε ε ε ε ε

ε ε ε ε ε − −

− − − −

= + + + +

− − + − − + +

+ + + + + + + + 2 10
1

2 8 2 6 2 4 2 2 10 8 6 4
1 1 1 1 2 2 2 2

2 2 2 8

8N 6N 4N 2N 2

8 1 6 6 1 4 4 1 2
2

2 1 1

0
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4 )) (e +4e +6(1/ (e +4e +1)N )

N

N N N N N N N N

N N N N N N N N N N N N N N N N

N N N N

N e
N e N e N e N e e e e e
e e N e e e e e e e e e e e e e e

e e e e

ε

ε ε ε ε ε ε ε ε
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− −

+ + + + − − + −

− + + + + + + +

+ + − 2 (6 2)
1 2

(4 2) 2 (6 4) (8 2) 2 2 ( 1) 2 6 2 2 ( 2)
2 1 2 1 2 1 1
2 2 2

1 2
N(2-4x)

0.67((2 2 )

9 0.1 (2 2 )

0.1 )e )

x N

x N x N x N N x Nx N x

Nx N

N e
e N e e N e N e N e

N e e

ε ε

ε ε ε ε ε ε ε

ε ε

+

+ + + + +

−

+ + − + − + +

+ −

     (44) 

In the same manner, the rest of components were obtained by 
using the Maple package, that we obtain (Eq. (38)) parameters of it. 
According to HPM, we can conclude:

0 1 2( ) ( ) ( ) ( ).x x x xθ θ θ θ= + +  			                   (45)

Solution whit FlexPDE software:

 In this study, we first introduce the FlexPDE software. FlexPDE 
software is a powerful tool for making connection among mathematical 

model, numerical solution and graphical results. This software has 
ability to analyze the wide range of engineering problems such as 
tension, chemical reaction kinetic and modeling of real mathematical 
problems. The steps of solving the problem in this software are as below: 

• Initial analysis of equation.

• Formation of derivations, integrals and functions with Galerkin 
Finite Element method.

• Construction of coupling matrix and solving it.

• Response graphical presentation.

Also, the problems that FlexPDE is capable of solving. Problems
such as first or second order partial differential equations in (one, two or 
three) dimensional Descartes and geometry, one-dimensional spherical 
or cylindrical geometry, sustainable or transition system [20], linear or 
non-linear equations, eigenvalues problems, and several other issues are 
the problems that this simple software is able to solve.In this paper, we 
compare the results of FlexPDE software with obtained results from HPM 
and AGM by writing FlexPDE software codes for Eq. (7).

Results and Discussion
Comparison of FlexPDE software results and HPM results 
with results of AGM

In this paper, the analytical study on Nonlinear Heat Transfer 
Equation in a straight fin by using Akbari-Ganji’s Method (AGM) 
and Homotopy Perturbation Method (HPM) to obtain an explicit 
solution of heat transfer equation (Figure 1). Figure 2 shows the 
comparison between the results of AGM method, HPM method and 
Flex-PDE software. In accordance with the observed figure error is 
very low between the results, this means there is complying between 
the FlexPDE software, AGM and HPM methods. Comparison 
between the Numerical results and AGM for different values of active 
parameters is shown in Table 1. In addition to, in order to verify Figure 
2, comparison between the results of AGM method and HPM method 
is shown in Table 2. As seen in these Tables, for different values of x 
in the range of [0.1] error rate is very low, the slight error in Tables 
1 and 2 indicates that AGM is a high accuracy method to solve these 
issues. Table 3 shows the Comparison between the timing of the HPM 
results and AGM solution for different values of active parameters. 
Scheduling table shows AGM solution is faster than HPM method. In 

N=1, ε1=0.2, ε2=0.2 N=2, ε1=0.5, ε2=0.5
x Nu AGM Error Nu AGM Error

0.0 0.667014 0.666532 0.000482 0.335800 0.334233 0.001567
0.2 0.679514 0.679028 0.000486 0.358500 0.357403 0.001097
0.4 0.717400 0.716910 0.000490 0.430000 0.428734 0.001266
0.6 0.781855 0.781390 0.000465 0.553000 0.553496 -0.000500
0.8 0.874972 0.874627 0.000345 0.739000 0.740049 -0.001050
1 1.000000 1.000000 0.000000 1.000000 1.000000 0.000000

Table 1: Comparison between the numerical results and AGM solution for ϴ (x).

N=1.5, ε1=0.3, ε2=0.3 N=2, ε1=0.6, ε2=0.7
x HPM AGM Error HPM AGM Error

0.0 0.473480 0.473420 6.00e-05 0.348000 0.346145 0.001855
0.2 0.492404 0.492429 -2.50e-05 0.371000 0.369370 0.001630
0.4 0.550154 0.550448 -0.000294 0.441000 0.440571 0.000429
0.8 0.796622 0.797812 -0.001190 0.745000 0.747202 -0.002202
1 1.000000 1.000000 0.000000 1.000000 1.000000 0.000000

Table 2: Comparison between the HPM results and AGM solution for θ (x).
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addition, in this study the effect of small parameters such as a1, a2 and 
N, temperature distribution in convective–radiative conduction fins 
with variable thermal conductivity examined. Figure 3 shows the effect 
of parameter (a1) on temperature distribution in convective–radiative 
conduction fins with variable thermal conductivity. According to the 
Figure 3, by increasing of ε1 the value of temperature distribution 
increases. Also, the effects of the parameter (a2) on temperature 

distribution in convective-radiative conduction fins with variable 
thermal conductivity is shown in Figure 4. In this figure, by increasing 
of a2  the value of temperature distribution increases. Variation of the 
fin efficiency with the thermo-geometric fin parameter for different 
values of the thermal conductivity is shown in Figure 5. This figure 
shows by increasing N efficiency decline. In contrast to, with increasing 
of a1, a2 the value of efficiency increases. In addition, Figure 6 shows 
temperature distribution in convective-radiative conduction fins with 
variable parameter N, it is obvious that fig by increasing N temperature 
distribution decline.

Conclusion
In the present study, the Akbari-Ganji’s Method (AGM) has been 

successfully implemented to find the solution of nonlinear heat transfer 
equations. The results are shown graphically. The comparison of the 
results of AGM with the results of the HPM, the fourth-order Runge-
Kutta Numerical Method (NUM) and FlexPDE software results was 
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0.33
0 0.2 0.4                     0.6 0.8 1x
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Figure 2: The comparison of the results obtained by AGM, HPM and Flex-PDE.
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Figure 3: Temperature distribution in convective–radiative conduction fins with 
variable thermal conductivity for ε2=0.3, N=1.

Time (s)
Active Parameters HPM AGM
N=1, ε1=0.2, ε2=0.2 22.83s 17.28s
N=1, ε1=0.3, ε2=0.3 27.32s 19.76s
N=1, ε1=0.5, ε2=0.5 27.54s  21.34s
N=2, ε1=0.2, ε2=0.2 35.36s  28.26s
N=2, ε1=0.5, ε2=0.5 39.21s  31.85s
N=2, ε1=0.7, ε2=0.7 41.86s  34.94s

Table 3: Comparison between the timing of the HPM results and AGM solution for 
different values of active parameters.
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Figure 4: Temperature distribution in convective–radiative conduction fins with 
variable fin dimension for ε1=0.3, N=1.
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Figure 5: Variation of the fin efficiency with the thermo-geometric fin parameter 
for different values of the thermal conductivity parameter for the first example.
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Figure 6: Temperature distribution in convective–radiative conduction fins with 
variable parameter N.

conducted. This research shows that AGM is powerful method to solve 
nonlinear differential equations. Also, the impact of various physical 
parameters such as a1, a2 N are examined. Results show that a1, a2 has 
direct relationship with temperature distribution but N has reverse 
relationship with them.
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