

Anti-Inflammatory Effect of Administrating Oral Paracetamol Suspension in Sprague Dawley Rats

Maryam IU, Aliya S, Thant Z, Swethadri JKM, Nordin S and Atif AB

Department of Medicine, Molecular Medicine, Biomedical Center, Malaysia

*Corresponding author: Atif Amin Baig, Molecular Medicine, Biomedical Center, Faculty of Medicine, Malaysia, Tel: +6096275587; E-mail: atifamin@unisza.edu.my

Rec date: April 27, 2015; Acc date: April 29, 2015; Pub date: April 30, 2015

Copyright: © 2015 Atif AB, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Clinical Image

The anti edenic effect of paracetamol was observed in two groups of rats; untreated (n=11) and treated with oral paracetamol (15 mg/kg) for total of 21 days. The ear edema was induced using croton oil. The comparative analysis was recorded as a mean of difference between the weights of the ears (mean weight of edema, g) and percentage edema inhibition (89% for paracetamol). The paracetamol suspension was found to decrease edema and congestion beside its analgesic effects in our rat groups.

paracetamol shows a fibro-collagenous tissue lined by stratified squamous epithelium. The hair follicles and sebaceous glands can be appreciated with areas of adipose tissue. A: Hair follicles, B: Stratified squamous epithelium, C: Sebaceous glands, D: Blood vessels.

Figure B: The section taken from untreated rat ear, that shows a tissue lined by stratified squamous epithelium with scattered areas of adipose tissue, congested blood vessels and mild edema in the connective tissue. A: Stratified squamous epithelium, B: Adipose

tissue, C: Congested blood vessel, D: Fibrocollagenous tissue.