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Introduction
Alzheimer’s disease (AD), also known as senile dementia, is a 

neurodegenerative disease of the central nervous system, and the most 
common cause of dementia, characterized by a progressive loss of 
cognitive function and behavioral disorders clinically. The pathogenesis 
of AD is complicated, and there is  still  no  effective treatment for 
it. Studies of etiology, pathology, and related pharmacology on AD 
are based on appropriate animal models, which should have three 
characters: A. pathological changes marked by senile plaques (SP), 
neurofibrillary tangles (NFTs), and loss of neurons and synapses; B. 
other pathological features such as inflammation and astrocytosis; and 
C. memory and cognitive dysfunction. Taken into account the months
in age of animal, if the animal model of AD also fits the three aspects
mentioned above, it will be proper to meet the requirements of the
experiment of AD.

Transgenic (Tg) animal models of AD

With the deepening in the research of the AD pathology and rapid 
progress of molecular neurobiology, more and more AD animal models 
have been established. They can be divided into two categories: non-Tg 
models and Tg models, the former focus on mouse, rat, dog or monkey, 
because these  species can  develop plaques and tangles; the latter 
usually adopt mouse and rat because of their reproducibility. Non-Tg 
models include aging animal model [1], senescence-accelerated prone 
8 mice (SAMP8), exogenous harmful material injection models [2,3], 
knock-in (KI) mouse model, and so on. These models can analog 
AD pathological changes to a certain extent as well as apparent flaws. 
Aging animal models analog the aging process and exhibit neurologic 
changes that are generally milder and more variable in nature, such 
as synaptic dysfunction and Ca2+  dysregulation [4], but they  often 
lack of characteristic pathological changes of AD. SAMP8 mice 
exhibit progressive synaptic loss and develop deficits in learning and 
memory as early as 4 months of age [5], develop an age-dependent 
accumulation of Aβ deposits in the hippocampus as early as 6 months 
of age [6], however, the life span are shortened accordingly. To the 
models induced by exogenous harmful material injection, NFTs caused 
by aluminum have been shown to possess an actual accumulation of 
neurofilaments (and not tau) [7]; Aβ peptide injection does not directly 
reproduce the lesions of AD [8]. APP/PS1 KI mice can replicate much 
of the Aβ-dependent pathologies seen clinically in AD [9,10], but the 
onset of cognitive deficits start at 11 months of age[11], and the AD-
related motor deficits does not develop. In contrast to the APP/PS1 KI 
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mutant, the APP KI mutation alone does not affect markers for adult 
hippocampal neurogenesis [12]. PS1 KI mice, a model that shows 
cognitive decline developed in an Aβ-independent way, therefore 
plaque-dependent pathology cannot be expected [13].

Tg models are important models for the AD study. They are 
established on the basis of genetics, mainly involves amyloid precursor 
protein(APP) gene on chromosome 21, presenilin1 (PS1) gene on 
chromosome 14, presenilin 2 (PS2) gene on chromosome 1, Tau 
protein gene on chromosome 17 and Apolipoprotein E (ApoE) gene on 
chromosome 19 [14]. By transgenesis, the course of AD can be simulated 
steadily at molecular level. Meanwhile, this technique can produce 
many animals at the same time, so the reliability and repeatability of 
experimental results can be ensured. Tg models have three types: single 
transgenic models such as APP Tg mouse model, double Tg models 
such as APP/PS1 Tg mouse model and triple Tg mouse models such 
as APP/ PS1/Tau Tg mouse model [15]. Although the emergence of 
Tg model is a hot spot of AD research in recent years, there are still 
problems in the application of Tg AD models, such as lack of aging 
process, poor reproductive ability and immunity. Therefore, compared 
with the real AD pathological changes, there is still a long way to go.

APP/PS1 Tg mouse model

Double Tg mouse from a cross line between APP and PS gene 
is an acknowledged method that β-amyloid (Aβ) deposition fastest 
in the brain [16]. Double Tg APP/PS1 mouse model mainly include 
five kinds: APPswe × PS1, APPSL × PS1M146L, APPswe × PS1dE9, 
5 × FAD and APPSL × PS1ki [17], of which APPswe × PS1dE9 is the 
most widely used AD model. APPswe is a Swedish family mutation. 
Leu and Lys are substituted by Asn and Met at the end sites of 670 and 
671 coding sequence of APP. PS1dE9 is the ninth exon deletion in the 
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familial AD. These mutations are believed to have a close relationship 
with the excessive formation of Aβ plaques. Extracellular Aβ deposition 
can be detected in such Tg mouse models at 2.5 months [18,19], long-
term potentiation impairment at 3 months[20], apparent dysfunction 
of learning and memory at 6 ~ 8 months [21,22], and a small amount of 
Aβ deposition in hippocampus at 6 months[23], SP in hippocampus at 8 
months and cerebral cortex similar with AD patients and neuron loss at 
12 ~ 18 months [24]. However, some studies found that along with the 
growth of mice, cerebral glucose uptake increased, especially around 
the SP, and the mechanism of which need to be further explored [25]. In 
contrast, single Tg AD mice reach a peak of memory damage at 12 ~ 15 
months or even older [26,27], and it failed to show any significant sign 
of neuronal loss in affected brain regions. Although APP/PS1 Tg mice 
showed accelerated amyloid deposits, the expression of Tau and NFTs 
are not obvious compare with APP/PS1/tau triple Tg AD model[28], 
but it has advantages in price and technology.

Application of APP/PS1 Transgenic Mouse Model
The etiological mechanisms of AD remain unclear, and there 

are many views  and  hypothesis, including inflammatory  reaction, 
neurotoxicity of Aβ, neuron  apoptosis, synaptic  plasticity, and etc. 
Therefore, it is difficult for us to establish and select an ideal AD model. 
Due to the similarities of many of its multiple pathological changes 
to AD, the application of APP/PS1 Tg mouse model becomes more 
extensive in recent years.

Apoptosis of neurons

Neuronal apoptosis is considered to be extremely important in the 
pathogenesis of AD [29]. Multiple factors are involved in the apoptosis 
of neurons [30], including  neurotoxicity of Aβ, oxidative stress injury 
(such as free radicals, lipid peroxidation and reduced polyunsaturated 
fatty acids), mutation of PS genes, calcium dyshomeostasis and 
endoplasmic reticulum stress[31-33]. Abnormal Ca2+ level and 
ryanodine receptor mediated Ca2+ release have been found increased in 
dendritics and cell bodies of cortex neuron in APP/PS1 Tg mice [34,35]. 
Some researchers have found that clearance of extracellular Aβ by the 
monoclonal antibody 3D6 or reactive oxygen species by N-tert-butyl-
phenylnitrone (PBN) did not rescue the cellular oxidative stress in 
neurites surrounding Aβ plaques in APP/PS1 mouse. This non-rescue 
event suggests that once the redox potential increased within cells that 
the effect of external anti-oxidants are ineffective .This non-rescue event 
implies that prevention therapies will be more effective than treatment 
therapies or that longer durations of treatment will be necessary[36].

Neurotoxicity of Aβ

Aβ cascade hypothesis indicated that the excessive accumulation of 
aggregated Aβ and subsequent pathological events are the key points of 
occurrence and development of AD [37]; and the levels of free Aβ were 
more closely related to the severity of cognitive function compared to 
Aβ fibers [38]. γ-secretase is an important enzyme that cleaves APP to 
Aβ peptide. It was demonstrated that by inhibition PS1 and nicastrin 
(NCT), two components of γ-secretases, the cognitive function of APP/
PS1 Tg mice improved [39]. However, many researchers believe that 
the severity of cognitive impairment is more closely related to NTFs in 
the cortical nerves, which might be one of the possibilities that many 
clinical trial targeting Aβ failed [40,41]. Nevertheless it is undeniable 
that Aβ deposition plays a key role in the pathogenesis of AD [42].

Inflammation response

Neuroinflammation, in the way of glial activation (especially in the 

vicinity of amyloid plaques), is one of the major pathological changes 
in the brain of AD patients, which may be involved in the pathogenesis 
of AD and has played an important role in the progression of AD [43]. 
The levels of various inflammatory factors and signaling molecules have 
been found alterations in APP/PS1 Tg mice, including the interleukins, 
complement C1q and TNF-α [44-47]. Chemokine ligand 4(CCL4) 
is overexpressed in APP/PS1  brains and that levels of CCL4 mRNA 
and protein are positively correlated with the age-related progression 
of cerebral insoluble Aβ deposition in these mice [48]. Other studies 
showed that long term over-expression of IL-1β could improve the 
pathological changes of Aβ, increase the expression of microglia 
associated with Aβ plagues, and induce the entry of peripheral immune 
cells into the brain [49].

Cholinergic system

To a certain degree, vulnerability of basal forebrain cholinergic 
system is associated with the severity of AD [50], especially the decline 
of acetylcholine levels [51]. Choline acetyl transferase (ChAT) in 
hippocampus and cortex tissue of 10 months APP/PS1 mice decreased 
significantly. Acetylcholinesterase (AChE) activity began to decline at 
16 months, and this decrease is correlated with the degree of dementia 
[52].

Neurogenesis

It has been demonstrated that neuron loss is most closely related 
to the cognitive impairment in AD pathological features [53]. 
Therefore, to promote and increase neurogenesis in hippocampus 
may be a potential pathway to delay or reverse the progression of AD. 
Neurogenesis includes 3 aspects: cell proliferation, differentiation 
and survival. Compared  with  age-matched controls, there was a 
decrease in neurogenesis in APP/PS1 Tg mice at 3-6 months, no 
significant difference between 12 ~ 15 months, which is consistent with 
the pathological features of brain in AD patients [54-56]. It is indicated 
that hippocampal neurogenesis may increase during the development 
of AD [57]. It is suggested that neurogenesis in APP/PS1 mice might be 
a compensatory effect for pathologic changes, and AD brain tissue may 
exist some toxic factors on neurogenesis [58]. Therefore, it is necessary 
to give some appropriate stimulus for the neurogenesis of neurons.

Synaptic plasticity

Synaptic plasticity is the basis of learning and memory. Synapses 
loss, especially dendritic spines loss which manifests as morphological 
changes is closely correlated with cognitive impairment [59]. The 
decrease of synaptic efficacy in the hippocampus is much earlier 
than the appearance of neuron degeneration [60]. Previous work has 
reported that the loss of synapses in the dendritic spines and dendrites 
was the main reason for the decrease of the synapse in APP/PS1 Tg 
mice [61].

Conclusion
APP/PS1 Tg mice, a proper AD model, has been highly valued by 

medical researchers, and has been applied in other studies besides AD. 
Some scholars have found that cholesterol levels in the hippocampus of 
APP/PS1 Tg model mice began to increase at 7 months, and mitochondrial 
cholesterol content increased significantly at 10 months [62,63]. Because 
the complex pathogenesis and pathological mechanisms of AD, the 
differences between autosomal-dominant AD and  sporadic AD, most of 
the animal models including APP/PS1 Tg model can only simulate part of 
the pathological characteristics of AD. Compared to the AD patients, the 
reduced inflammatory response and ferric iron concentration were found 
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in the APP/PS1 neural tissue, which suggest that the Tg model loosely 
fits within the current framework of the amyloid cascade model [64].It 
is necessary to have a good understanding of the model when adopted. 
With the study and development of molecular biology mechanisms of 
AD, some novel and more proper AD animal models will certainly be 
established in future, which will in turn greatly accelerate the study and 
therapy progress of AD.
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