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Metalloid arsenic has several structural form (Table 1), and can 
combine with many metals such as iron and molybdenum but Arsenic 
III (inorganic form) is most toxic form and is accumulating and entering 
in food chain constantly, escalating arsenic mobility issue more than 
calculated one. Further environmental condition such as pH, floods 
(redox condition), are conducive in high mobility and interconversions 
of arsenic getting complexed with many other compounds, favouring 
their easy transport in rice and other seeds via multiple transporters 
e.g., aquaglyceroporins in both plant and animals [1].

Marine organism had exceeding high levels of arsenic accumulation 
in non-toxic organic form arsenobetain, while rice is reported to have 
exceeding levels of inorganic arsenic (III). Arsenate As (V) is non-
toxic form but it becomes toxic when arsenic (V) combines with 
phosphate or iron oxide and thus inhibits phosphorylation processes 
after entering the cells. Arsenate As (III) causes deactivation of enzyme 
due to its high affinity towards thiol groups. In addition, inorganic 
arsenic enters the cell via the hexose transporter, phosphate transporter 
systems (PTS) or aqua-glycoporins, while rice and other plants had 
different transporter. Arsenic reductase coded by Ars or Arr operon 
are helpful in conversion of arsenite to arsenate in both prokaryotes 
and eukaryotes and some microbes has ability to pump out exceeding 
arsenite after detoxification. Arsenic detoxification in multicellular 
organisms is based on methylation pattern and further oxidation makes 
arsenic less toxic basically arsenic (III) is converted into arsenic (V) 
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Abstract
Arsenicosis is about potent toxicity and carcinogenic effect of arsenic but sometime it had been used for 

medicinal purpose in old times also. Nowadays it has been emerging as a new threat for human community at large 
because of recent report of arsenic mobilization in food chain. Study reveals presence of high arsenic concentration 
not only in drinking water but also in in many food crops, meat and other consumables. Many part of world is facing 
acute crisis such as Bangladesh, china India, and many more countries as depicted in Figure 1 and in more than 
70 countries, peoples are severely effected by groundwater arsenic contamination and need urgent interventions. 
Bangladesh has been declared as one of the worst natural calamities where rural and urban communities are facing 
severe consequences in form of skin cancer such as keratosis and melanosis. In India, Malwa, Punjab, has been 
declared as Cancer belt, where intense sign of cancer has been reported in skin and other vital organs.

which is excreted in urine of human being. However, since human has 
limited capacity of conversion, therefore high accumulation causes 
various malfunctioning such as keratosis and melanosis.

Microbial action is thought to provoke high mobilisation of 
arsenic via arsenic reductases after solubilisation of arsenic complex 
due to chelation. Methylation is believed to be one of the important 
mechanisms present in all organism including many microbes such as 
bacteria, fungi, and even higher plants, other organisms that converts 
them back in non-toxic form. Mostly, alternative oxidation and 
reduction is the basis of conversion of one form of arsenic into other. 
Even though arsenite is more toxic than arsenate, this transformation is 
essential, since only arsenite can be methylated. Arsenite is methylated 
to methylarsonate, which is reduced to methylarsonite and further to 
dimethylarsinate and to dimethylarsinous acid [2].

Arsenic contamination in non-effected area is of great concern 
today and spreading via food chain. Old strategies for arsenic mitigation 
were not only costly, but also results in large amount of sludge 
production, which was difficult to detoxify in one-step. Many worker 
believes that comprehensive multistep approaches towards escalating 
problems is essential in mitigation of arsenic means both chemical as 
well as biotechnological approaches can work in synchronous matter. 
Therefore, alternative techniques may be helpful in order to prevent the 
entry of arsenic in the food chain. One of the most relevant strategies 
seems to be the application of arsenic resistance microbes equipped 
with both uptake and detoxification machinery for sequestration and 
introduction of novel genes into food crops. Many endophytes isolated 
from hyper accumulator’s plants have role in mobilization of arsenic. 
Metagenomics approaches seems to be plausible in finding potential 
microbes in order to enhanced bioremediation capability of arsenic on 
the basis of presence of clusters of genes and gene networks present 

Figure 1: Countries affected with Arsenic metal in groundwater [15].
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for As sequestration and metabolism [3]. Many hyper accumulators are 
known to adsorb more than 95% of the arsenic from the soil as evident 
by the fern (P. vittata) [4]. Unfortunately, the plant P. vittata grows 
well only in warm, humid environments with mild winters, therefore 
they cannot grow everywhere in every environment. Therefore, some 
scientist are making efforts to increase the ability of plants to pump 
out arsenic from soil via creating GMO plants which have gene for 
both mobility and sequestration of arsenic and beside this some 
more gene required like metal chelator, metallothionein (MT), metal 
transporter, and phytochelatin (PC) genes [5]. Dhanker and colleagues 
constructed Arabidopsis plants, where, γ -ECS gene related to mobility 
was introduced and the arsenate reductase C (ArsC) gene to control the 
sequestration of arsenic [3,6,7]. Compared to other techniques, biomass 
based techniques are more useful. Some research on endophytes related 
to bioremediation and use of arbuscular mycorrhizas (AMs) are also 
involve absorption of arsenic. Mycorrhizas are vital for some plants 
since these are fungi associate with plant roots, so an important tools in 
increasing uptake of nutrients, especially phosphorus. AM fungi may be 
helpful in increased arsenic uptake along with hyper accumulating fern 
P. vittata The arsenic translocation factor (TF) was reported to increase 
in AM-inoculated plants as compared with Uninoculated plants, for 
example in Glomus mosseae-inoculated plants TF factor was 730 as 
compared to 50 as compared to control plants. Since arsenate shares 
structural similarity with phosphate and thus many hyper accumulator 
species such as P. vittata absorbs arsenate via phosphate transport 
system (PTS) or with other metal transporter system [8]. Secretion of 
various chemical chelators also increases rapid uptake of arsenic but 
mostly plants lacks adequate system to adsorb arsenic rapidly.

Some edible microbes such as Lactic acid bacteria has various special 
characteristic features such as secretion of antibacterial substances 
(bacteriocins) presence of arsenic reductase (Ars C). Lactobacillus lactis 
reported to contains GSH which protects bacterium under extreme 
acidic conditions [9,10]. Use of LAB is limited in adsorption since they 

requires surface modifications for perfect adsorption of arsenic. There 
are presence of many secondary transporter Ars A, Ars B, Ars C operon 
that makes them arsenic resistant bacteria but they fail to adsorb 
Cobalt, Copper, Nickel, and Iron metals [9]. Bacillus adsorb wide range 
of metals such as mercury, lead and cadmium, while Staphylococcus, E. 
coli, Lactobacillus are arsenic resistance [11,12]. Known Lactobacillus 
species for arsenic are Lactobacillus acidophilus, L. Crispatus, while 
Pseudomonas proteda, Bacillus subtilis, L. rhamnosus, Bifido bacterium 
and Lactobacillus plantarum [9,13,14]. Both facultative aerobic and 
anaerobic e.g., bacillus, clostridium reported to remove metal ions 
rapidly [15-17]. Presence of metal resistance shows microbial capability 
to survive in the environment, which can be harnessed as an effective 
mitigation strategy for arsenic [11,18,19]. Arsenite III is mostly 
dominating in anoxic water such as floods and via root uptake enters in 
seedlings. DARP (Dissimilatory Arsenate-respiring prokaryotes) [20] 
is associated with arsenic reduction via electrons exchange via release 
of chelators such as lactate, acetate and formate. These microbes utilizes 
‘arr’ biomarkers [21] and thrive well in deep sea, deep well and lake or 
contaminated aquifers [22].

For arsenic detoxification arsenate and arsenite operon is present 
in both the gram positive as well as gram negative bacteria. arr operon 
is related to arsenic reductase present in many microbes such as 
Shewanella, bacillus some organism like E. coli, Staphylococcus, Bacillus, 
Acidithiobacillus, Pseudomonas, had well characterised Ars operon 
linked with As(V) detoxification where. In these organisms, As (V) is 
converted to As (III) via arsenic reductase, which triggers ars operon. 
Actually, these operons are linked with efflux and transporter protein, 
as a result arsenic V enters via phosphate transporter protein while Ars 
III is efflux after activation of Ars operon [16]. Endophytes are part of 
plant system and thus may help in mobilisation of nutrients and arsenic 
along with Arsenic V which is analogous to phosphate while some 
rhizospheric endophytes stops mobilization of arsenic metals. There 
is more bioavailability of arsenic or deposits of arsenic. Rather than 

Arsenic form Sources Comments References
Sodium Arsenate Pesticides and wood  [27]
DMA (also known as cacodylic acid) have been 
widely used as pesticides and herbicides Preservatives  [28,29]

Arsenopyrite Rocks, Soils, Minerals, mines  [15,49]
Ground water Arsenite, arsenate [30]

Arsenobetaine, Arsenocholine, tetramethylarsonium 
salts  Organic forms (methyl and dimethyl arsenic 

compounds) [31]

Arsenosugars Coal-fired power generation  [32]

 Plants, burning vegetation and also due to eruption 
of volcano  [33]

Fe- reducing bacteria are linked to the mobilization 
of As in aquifer of the river delta in Bangladesh.

Tube-wells
>1 mg L-1

Bengal Delta region
(encompassing Bangladesh and West Bengal) [34]

Metal-reducing bacteria
Arsenobetaine Marine animal  [35]
[(CH3)3As+CH2COOH] dimethylarsinic acid  Soil  [36]
arsenobetain MMA, DMA, TMAO Plants  [37-39]
Arsenic III, DMA, MMA, MA As-cysteine, As2S3 and 
As2O5

  [40,41]

arsenate, arsenite, MMA and DMA Soil, rice  [42]
Asbet, Aschol, arsenosugars, arsenolipids Sea foods No harm by intake [43,44]
As(III), DMA,MMA, As(V) Urine wine club soda  [45]
Legume–rhizobium Sunflower  [46]

Symbiosis
(Helianthus annuus L.), jack bean (Canavalia 
ensiformis L.), velvet bean (Stizolobium aterrimum 
L.), castor bean (Ricinus communis L.)

 [4,47]

Table 1: Sources and forms of arsenic.
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single microbes to act for decontamination groups of microbes (called 
as Biome) activates for maintaining balance between toxic metals. 
Recently, addition of SiO, or iron oxide (Fe2O3 or Fe3O4) nanoparticle in 
soil resulted in increasing growth of specific micro-organism specially 
anaerobic arsenic reducing microbes, which resulted in enhanced 
uptake, via rapid mobilization and precipitation of arsenic in presence 
of sodium acetate. This reduction strategies is actually depends on 
presence of specific operon, such as Arr operon. Treatment of NPs 
with sodium acetate increases precipitation of arsenic due to electron 
donating capacity [23,24]. In assisting microbial bioremediation plants 
may have vital absorptive role in aim to survival strategies, Bayer et al. 
[25,26] has recently studied a detail mechanism of interaction between 
plant and microbes via metagenomics study [48]. In conclusion, more 
research effort is required in pilot scale study which may represent a 
confirmative mitigation of arsenic from food chain [49,50].
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