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Introduction 
Milling is a vital unit operation in various material processing 

operations and consumes around 2% of the energy produced in the 
world [1,2]. It dictates the cost economics of mineral, cement, power, 
pharmaceutical and ceramic industries. Grinding is an important unit 
operation for chrome ore pelletisation process. Chromite ore along 
with 5% coke is milled in the wet ball mill and filtered ore cake is mixed 
with bentonite and used for production of green pellets. Pellet quality 
and pelletisation subprocesses (filtering, pelletisation and sintering) 
depend on the characteristics of the ball mill product size. Physical 
properties of ores, especially hardness, friability and grindability play 
a vital role in grinding to achieve the desired fineness for pelletisation 
process [3,4]. Ore particle size, shape and roughness influence the 
particle packing and moisture required for green ball formation [5]. 
Improper particle size distribution results in poor pellet qualities and 
reduced plant throughput as well. Ball mill operation is a complex 
process and there is no unanimous mathematical relationship given 
in the literature for all kind of materials. Various attempts have been 
made to relate the milling parameters and particles fineness but most 
of these models required a material constant for different materials. 
Material constant vary significantly with change in ore properties and 
it restricts the success of the models [6-10]. Artificial neural network 
is a faster and reliable tool to develop a mathematical model to predict 
the process variability in such cases. It is not a new technique for 
mineral processing and has already been explored for various mineral 
processing operations in past [11,12].

Present study is focused to model the ball operation of a 
pelletisation plant to predict the ball mill product size distribution with 
changed operating conditions. The mathematical model developed 
using artificial neural network has been compared with various 
conventional models and results are compared for actual and predicted 
size distributions.

Problem Definition 
Problem statement 

Performance ball milling depends on ore properties and process 

variables. Ore properties depend on the geological and geographical 
characteristics. It is not possible to develop a single mathematical model 
for all kind of ores. Various mathematical models have been developed 
using the material constants but a limited success has been achieved. It 
is very difficult for a static model to consider the variation in the ores 
characteristics along the vertical and horizontal location of ore block. 
This problem becomes more critical when a blend of different kind of 
materials grounded in a ball mill for pelletisation purposes. Artificial 
neural network can be a useful technological development which can 
consider all the uncertainties to develop a dynamic model without 
bothering about the material constants and geography of ore block. In 
this study an Artificial Neural Network (ANN) based neural network 
model has been developed to predict the particle size distribution of a 
ball mill product using the lab data. Developed model uses ball size, 
ball-ore ratio, ball load and grinding time as the input variables and 
particle size distribution (<75 µm, <38 µm) as an output measurements.

Data analysis

Experimental data were collected from lab to develop the 
mathematical model. A statistical analysis has been carried out to see 
the variable interdependence. Details are given in the table 1 and 2. 
Experiments were carried out using a ball mill of 38 cm diameter×38 
cm length and Chrome Ore (-3 mm), Coke Fine (-1 mm) and at a pulp 
density of 70% solid and 50 rpm ball mill speed.

Material characterisation 

The test work was carried out using the chromite ore samples 
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collected from the feed ore of a pelletisation plant. These chromite 
ores are of friable in nature with friable and broken particles. The bond 
work index of ores was 6 kWh/ton. These ore contain 30, 26, 12 and 
14%, Cr2O3, Fe, SiO2 and Al2O3, respectively.

Mathematical Modelling
Banerjee model

Experiments were carried out to optimize ball load, ball size, ball 
ore ratio, grinding time, pulp density and ball mill rpm. It was found 
that ball mill rpm and pulp density are having least effect on the product 
size distribution. Hence, they drop these variables for mathematical 
model development. Mathematical model developed by Banerjee is 
given in equation (1) and (2). This model is based on ball diameter 
(Db), ball-ore ratio (R) and grinding time (t).

S75=19.30-0.31 Db+12.60 R+0.47 t 			                 (1)

S38 = 4.39-16Db+9.52R+0.31t 			                      (2)

S75-Percentage of particles below 75 micron

S38-Percentage of particles below 38 micron

Statistical modeling

Increased computational facilities enable us to carry out different 
kind of data analysis in a quick session with better reliability. A 
Statistical model has been developed using more number of input 
variables than the Banerjee et al. [1] used. Statistical model is given in 
equation 3.

  S75=23.3-0.11*BS40-0.89*BS25-0.98*BS18+0.43*BL+3.98*R+0.43*t-  (3)

S38=-0.39-0.017* BS40+0.002*

BS25+0.015* BS18+0.35*BL+2.71*R+0.31*t- 	 	               
(4)

ANN modeling 

Artificial neural networks have proved their applicability in 
various data mining application. These are generally used for function 
approximation, classification, and pattern reorganization problems. 
Artificial neural networks are directed graph consisting nodes with 
interconnecting synaptic and activation links. The weight given to 
different links decides the critical effect of the different input pairs 
on the outputs. Each neuron holds three important elements that are: 

connecting links (weights), adder (summing agent) and an activation 
function, which control the amplitude of output. Structure of an 
Artificial Neural Network can be classified into three groups based on 
the arrangement of neurons and the connection patterns of the layers: 
feed forward, feedback, self-organizing [13].

Feed forward back propagation neural network: In these 
networks information enter at the inputs layer and passes through the 
network without any feedback between layers. The training is mainly 
undertaken using the back propagation-based learning algorithms. In 
the processing units of feed forward inputs Xi are multiplied by weights 
Wji for a hidden node hj; summation of all the Wji×Xi is then added toa 
bias value θji and finally operated by a suitable transfer function  (f). 
Similar operations are repeated for varying number of hidden layers 
in order to find out suitable network architecture. The operations can 
be written as

( )θ= +∑j ij i jih W X

Hidden layers contribute to the output nodes through a linear 
operation. The output Y can be written as

( )θ= +j iY f W h

Where Wj and θ’ are new sets of weights and bias values, 
respectively. In the process of learning, the error of the calculated by 
Eq. (5) or predicted output in relation to the actual output is back 
propagated to adjust all the weight and bias values.

21( )( )
2

= −j jE Y X  (5)

There are several algorithms to optimize the error values. A 
number of different kinds of back propagation learning algorithms 
have been proposed, such as an on-line neural-network learning 
algorithm for dealing with time varying inputs, fast learning algorithms 
based on gradient descent of neuron space, and the Levenberg–
Marquardt algorithm [14,15]. In current work, the performance 
index was predicted by resilient feed forward back propagation neural 
network algorithm. Multi-layered feed forward neural network is 
shown in figure 1 is used to estimate the particle size distribution. 
After performing the basic statistical operations training and testing 
datasheet was prepared in which 64 datasets were used for training and 
10 datasets were used to test these networks. The transforms functions 
are used to relate the input and outputs of the network. Tansig, logsig 
and purlin are commonly used transfer function for prediction and 
classification. In current problem better results were achieved by using 
tansig for first layer and linear for last two layers. The training data 
set for neural network was primed using principal component analysis 
and retains only those components, which contribute more than 5% to 
the variance in the data set. Feed forward neural networks were trained 
for 5000 epochs and number of neurons was optimized along with 
hidden layer for all the training algorithms. The targeted error was kept 
0.1 which is usually found acceptable for these kinds of problems.

Results and Discussion
Prediction accuracy of mathematical models

Mathematical models developed were tested for medium grade 
chromite ores from open cast mine of northern block. Figures 2 and 
3 shows the comparative prediction accuracy of all three models. 
Graphs show that R-square value vary between 0.76 and 0.93 and it 
is highest for artificial neural network model to predict the particle of 
<38 micron. In case of particle <75 microns, it was found that R-square 

Input Variable Level
Ball Size (mm) - BS 40,25,18
Ball Load (kg)- BL 22.50, 67.50

Ball- Ore Charge ratio-R 1,3
Grinding Time (minutes)-t 15, 30, 60, 90

Table 1: Input variables.

Variables
<75micron <38micron 38-75micron

Cc p Cc p Cc p
40mm (BS40) -0.05 0.67 -0.06 0.62 -0.04 0.74
25mm (BS25) -0.04 0.75 -0.05 0.71 0.02 0.99
18mm(BS18) 0.14 0.26 0.18 0.16 0.03 0.80

Ball load (BL) 0.49 0.00 0.53 0.00 0.24 0.05
Ball: Ore (R) 0.21 0.09 0.23 0.05 0.07 0.56

Time (t) 0.73 0.00 0.69 0.00 0.61 0.00

Cc = Correlation coefficient; p: p-value

Table 2: Correlation Matrix for input and output variables.
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value vary between 0.75 and 0.92 and it was also highest for artificial 
neural network model. It was also observed that all the modes are 
poor predictor near to limits of process variables but neural network is 
predicting more accurately than all other models. Using these models 
particles < 75 and <38 micron were predicted and particle 38-75micron 
was calculated using these two values. A predicted particle size 
distribution curve and actual particle size distribution curve was 
plotted and shown in figure 4. It is shown for minimum (set 1) and 
maximum (set 2) particle size distribution. It reveals that for finer size 
distribution ANN and regression is performing similar but for coarser 
size ANN performs better. 

R square of predicted and actual values can not exhibit many insigts 
of model. So, percentage error in these values also studied to provide 
important patterns. It shows that regression model underpredict 
whereas Banerjee model overpredict the weight percenatge of <75 
mirocn size particles. Highest percentage errors were 22.1,12.3,13.5% 
for Banerjee, regression and neural network model, respectively. Error 
distribution for both the particle sizes is given in figures 5 and 6.

Effect of ore quality variation on ANN model

Variation in quality of ores with the depth and length of mine is 
a commonly encountered problem for mineral processing plants. 
Samples of the hard ore from the different mine location of the same 
ore body was collected and provided as an input for the developed 
neural network model and found that accuracy of the prediction was 
very higher for these case. Prediction accuracy was 0.92 and 0.96 for 

<38 and <75micron size particles, respectively. It is shown in figure 7. 
The reason behind this was the neural network found out an optimum 
multidimensional surface using the soft ores and same space was 
reconstructed using the data of hard grade which enable it to optimize 
the weights of hidden layers to get the best prediction for new data sets.

Conclusions
Milling is an importan unit operation for pelletisation of chorme 

ores. But development of a sigle integrated empherical model to 
estimate the variation in ore fineness due chaged feed blend properties 
is a diiffcult task. Artificial neural network is suitable tool for this 
problem and can provide very accurate and faster prediction about the 
change in particle size distribution due to variation in ore properties. 
It was found that it is better than the statstical models and predcit the 
effect of chaged ore quality with higher accuracy. This is a dynamic 
model and do not require any material constant to achieve the based 

Level-I

      Ore Type

      Mine

      Block

Level-II

 Ball Size (V1)

 Ball Size (V2)

 Ball: Ore (V3)

    Grinding time (V4)

Wi1

Wi2

Wi3

Wi4

f

Particle Size
Distribution

∑

Figure 1: Artificial neural network Model of Ball mill.
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Figure 4: Prediction of Particle Size distribution.
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prediction accuracy which help it to get better accuracy with variation 
in ore quality and milling parameters. This setup can be used for online 
monitoring of the milling performance of comminution plant for 
beneficiation and pelletisation process to minimze the energy losses 
with improved processs effecieny.
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