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Editorial

Soil retentive processes and biodegradation kinetics are key 
parameters in predicting offsite transport of herbicides [1,2]. 
Sorptive and physical entrapment processes interact with highly 
compartmentalized tortuous pore space to impose limitations on the 
availability of herbicides to the plants they are designed to kill, as well 
as the microorganisms required for biodegradation [3,4]. Since degree 
of water saturation determines the cross sectional area for diffusion 
of solutes, water content profoundly affects herbicide bioavailability. 
Product labels for soil-active herbicides often prescribe application 
rates based on soil texture or organic matter content to deliver sufficient 
product to overcome plant bioavailability limitations caused by sorption 
[5]. In fact, the concentration of herbicide in solution can be a good 
predictor for both herbicide activity and degradation kinetics [6]. For 
these reasons, variation in soil properties over a field scale has been used 
for precision herbicide applications [7]. Since limited bioavailability 
may protect herbicides from biodegradation, some products can 
be detected long after use [8] or may be re-released within the same 
growing season when conditions change, typically due to rainfall after 
a drought [9]. Most herbicides exhibit sorption-desorption hysteresis 
and in unsaturated soils, the non-equilibrium “apparent” sorption 
coefficient tends to increase with time as slow desorption kinetics fail to 
replenish material lost from solution by degradation or leaching [10]. 
This slows down biodegradation as residues “age” in the soil matrix 
[11]. The ubiquity of bioavailability-driven persistence has led to the 
development of various treatments, such as the addition of surfactants 
to release sorbed materials or conversely promoting persistence by 
enhancing binding of herbicides to soil organic matter [12]. However, 
while chemical and physical interactions with soil may be intrinsic 
properties of a herbicide, the resulting effects on biodegradation rates 
are a function of microbial population sizes, and thus may be subject 
to change.

A particularly revealing case study in the dynamic nature of 
physicochemical constraints on adaptive biological systems is the subtle 
role of bioavailability in the persistence of the herbicide, atrazine. This 
product was introduced in 1959 and quickly became the most widely 
used herbicide in the world, holding that title until displaced in recent 
years by the use of glyphosate on GMO crops [13]. Atrazine is inherently 
biodegradable, and numerous bacteria able to grow rapidly on the 
herbicide as a C or N source have been identified [14]. Though only 

moderately retained by soil sorption, atrazine is generally protected from 
degradation by bioavailability limitation, owing to the limited driving 
force for diffusion produced by small populations of atrazine degraders 
typical of most soils [15]. In recent years, numerous sites have been 
reported to exhibit reduced atrazine phytotoxicity and concomitantly 
more rapid atrazine degradation, typically after many years of atrazine 
use [16]. Populations in these soils are only slightly amplified, however, 
though there appears to be a shift in the representation of atrazine 
degradation genes in favor of those found in gram positive bacteria [17]. 
The tendency of gram positives to sustain more stable populations in 
soil may explain the recent increases in degradation rates. Alternatively, 
it has been shown that the subtle increases in degrader populations are 
just enough to overcome the limitations on atrazine degradation rate 
imposed by tortuous diffusion [18,19]. In this case, the bioavailability to 
weeds is unchanged, whereas bioavailability to degraders has increased 
(increased population constitutes a greater sink), depleting the residual 
concentration of herbicide and reducing weed control.

Figure 1 depicts a soil ecosystem at the scale of the pore environment 
inhabited by soil microorganisms. Soil solids and water films are shown 
inhabited by two pesticide degraders (depicted in green and orange). 
Also present is a pesticide represented by red hexagons, depicted in 
both the water film and adsorbed to solid surfaces to demonstrate 
potential to replenish the solution as it is depleted by degradation. A 
root hair is included for scale. The soil solids are organized into clusters 
surrounded by continuous water films, showing that in unsaturated 
conditions, part of the pore space allows free diffusion while diffusion 
between other compartments is constrained by too-thin water films. 
Also evident is the possibility that water pools containing pesticide can 
be isolated from degraders, or degraders may be present in pools devoid 
of pesticide. It is also clear that some degraders may lack competition 
for the pesticide within the water film they occupy, whereas other water 
films may overlap different degrader populations, resulting in direct 
competition for resources. This simple diagram obviates the complexity 
of relationships among microorganisms, weeds, the soil matrix, and 
herbicides introduced to control weeds. Compartmentalization protects 
pesticides from degradation as well as degraders from competition, 
and limits exposure of weed roots to pesticides in solution. Changes in 
water levels will have obvious and profound effects on bioavailability 
and changes in microbial populations will change the driving force for 
diffusion through thin water films.

As we broaden our understanding of compartmentalization 
within the soil environment, some of the peculiarities observed in 
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Figure 1:  Depiction of the soil environment at scale of a degrader.
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environmental behavior of herbicides become easier to predict or 
interpret. Lacking, however in the literature are studies in which tools 
of microbial ecology, such as stable isotope probing [9,14] have been 
deployed on scales relevant to address bioavailability questions. As 
these tools become more affordable and increasingly sensitive, it will 
be possible to gain a clearer understanding of herbicide biodegradation 
and function, and why these processes may change as use patterns shift 
and microbial populations adapt to substrates.
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