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Introduction
Many plants were found to secrete a wide range of compounds into 

the rhizosphere and to change the chemical and physical properties 
of the rhizosphere soil, which affect the community of microbial, 
fungi and plants [1-4]. Through the secretion of compounds such 
as allelochemicals, plants inhibit the germination and growth of 
neighboring plants to compete more effectively for the resources [3,5,6]. 

The negative impacts of commercial herbicide use on the 
environment make it desirable to diversify weed management options 
[7-9]. Many investigations have been attempted to exploit allelopathy of 
plants for weed control purposes in a variety of agricultural settings [10-
12]. Rice has also been extensively studied with respect to its allelopathy 
as part of a strategy for sustainable weed management, such as breeding 
allelopathic rice strains [13-15]. 

A large field screening programs and laboratory experiments 
in many countries have proved that rice is allelopathic and releases 
allelochemical(s) into its rhizosphere [16-24]. A number of compounds, 
such as phenolic acids, fatty acids, phenylalkanoic acids, hydroxamic 
acids, terpenes and indoles, have been identified as potential rice 
allelochemicals [25,26]. However, the studies demonstrated that the 
diterpenoid compounds, momilactone A and B are the most important 
rice allelochemicals, with momilactone B playing a particularly critical 
role [27-29]. 

Rice plants secrete momilactones from their roots into the 
rhizosphere over their entire life cycle at phytotoxic levels, and 
momilactones are able to account for the majority of the observed rice 
allelopathy [30-32]. In addition, genetic studies have shown that selective 
removal of only the momilactones from the complex mixture found in 
rice root exudates significantly reduces allelopathy, demonstrating that 
these serve as allelochemicals, the importance of which is reflected in 
the presence of a dedicated momilactone biosynthetic gene cluster in the 
rice genome [33,34]. However, allelopathic activities of momilactones 
were determined on only a few test plant species such as lettuce and 
barnyard grass [25,32]. Therefore, in the present study, the allelopathic 

activities of momilactone A and B were determined nine test plant 
species including weed plants, and toxicities of momilactone A and B 
on four rice cultivars were also determined. 

Materials and Methods
Plant materials

Cress (Lepidum sativum L.), lettuce (Lactuca sativa L.), alfalfa 
(Medicago sativa L.) were chosen as test plants for bioassay due to 
their known seedling growth behavior. Weed species, ryegrass (Lolium 
multiflorum Lam), timothy (Phleum pratense L.), barnyard grass 
(Echinochloa crus-galli (L) Beauv), Echinochloa colonum L. Link, and 
crabgrass (Digitaria sanguinalis L.) were also chosen for bioassay. 
Typical model plant, Arabidopsis thaliana L. ecotype Columbia and four 
rice (Oryza sativa L.) cultivars, Koshihikari, Nipponbare, Norin 8 and 
Sasanishiki were chosen for bioassay. Seeds of cress, lettuce and alfalfa 
were purchased from Takii Co. Ltd. and seeds of timothy, barnyard 
grass, E. colonum and crabgrass were purchased from Herbiseed 
(London UK). Arabidopsis were grown and its seeds were harvested. 

Momilactone A and B 

Momilactone A and B were isolated from husks of rice (cv. 
Koshihikari) as described by Kato-Noguchi et al. [35,36]. Husks (1 kg) 
of rice were extracted with 4 L methanol for three days. After filtration 
using filter paper (No. 2; Toyo ltd, Tokyo) filtrate was concentrated at 
40°C in vacuo to produce an aqueous extract. The aqueous extract was 
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Abstract
Momilactone A and B had been demonstrated to play critical roles in rice allelopathy by the findings of 

physiological and genetical approaches. Rice plants secrete momilactones into the rhizosphere over their entire life 
cycle at phytotoxic levels, and momilactones are able to account for the majority of the observed rice allelopathy. 
However, allelopathic activities of momilactones were determined on only a few test plant species. Therefore, this 
study was to determine the allelopathic activities of momilactones against nine test plant species including weed 
species, and four rice cultivars. 

Momilactone A and B inhibited Arabidopsis, alfalfa, lettuce, cress, timothy, barnyard grass, E. colonum, crabgrass 
and ryegrass at concentrations greater than 3 and 0.3 μM, respectively. The inhibition on those test plants was 
concentration dependent. On the other hand, effectiveness of momilactone A and B on rice cultivars, Koshihikari, 
Nipponbare, Norin 8 and Sasanishiki was very weak. Those rice cultivars were only inhibited by momilactone A and B 
at concentrations greater than 300 and 100 μM, respectively. Momilactone A and B may have potential as templates 
for the development of new plant control substances because of their selective inhibitory activities on weed plant 
species. More importantly, momilactone A and B as allelochemicals in rice may provide a molecular marker for 
breeding and/or engineering efforts directed at increasing allelopathic activity of this critical staple food crop. 
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adjusted to pH 7.0 with 1 M phosphate buffer and the extract was then 
partitioned three times against an equal volume of ethyl acetate. The 
ethyl acetate phase was evaporated and separated with columns of silica 
gel and Sephadex LH-20. Momilactone A and B were finally purified by 
HPLC and identified by 1H-NMR spectra. 

Bioassay of momilactone A and B

Momilatone A and B were dissolved in 0.2 mL methanol, added 
to two sheets of filter paper (No. 2) in a 5.5-cm Petri dish. Methanol 
was subsequently evaporated and the filter paper in the Petri dishes was 
moistened with 3 mL of 1 mM MES buffer. The final concentrations of 
momilactone A and B were 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 
1000, 3000 and 10000 μM. Seeds of cress, lettuce, alfalfa, ryegrass, 
timothy, barnyard grass, E. colonum, crabgrass, Arabidopsis and rice 
cultivars (Koshihikari, Nipponbare, Norin 8 and Sasanishiki) were 
surface sterilized in a 2% (w/v) solution of sodium hypochlorite for 15 
min, rinsed four times in distilled water and germinated in the darkness 
at 25°C for 16-72 h. 

Then, 10 germinated seeds of each test plant were individually 
placed on the filter paper in Petri dishes. The length of roots and 
shoots of these seedlings was measured after 48 h of incubation in the 
darkness at 25°C. For control treatments, methanol was added to the 
filter paper in the Petri dish and evaporated. Control germinated seeds 

of each test plants were then placed on the filter paper moistened with 
3 mL of 1 mM MES buffer as described above. Percentage inhibition 
was determined by the formula: [(control plant length-plant length 
incubated with momilactone A or B)/control plant length]×100. These 
were three replicates per treatment and the experiment was repeated 
six times. 

Results and Discussion
Inhibitory activities of momilactone A and B on nine plant 
species 

Momilactone A inhibited the growth of roots and shoots of ryegrass 
at concentrations greater than 10 μM (Figure 1). The inhibition was 
increased with increased concentration of momilactone A. When 
inhibition of ryegrass roots and shoots were plotted against the logarithm 
of momilactone A concentrations as described by Streibig [37], significant 
logistic functions (sigmoid) were obtained. The equation of the functions 
of momilactone A was Y=[(-0.313-84.479)/{1+(X/68.673)30.046}]+84.479; 
(r2=0.995 and Y=[(-0.552-77.290)/{1+(X/73.372)0.958}]+77.290; (r2=0.998) 
for ryegrass roots and shoots, respectively. Y in the equations indicates the 
inhibition (%) and X indicates the concentration (μM) of momilactone A 
as shown in Figure 1.

Momilactone B inhibited the growth of roots and shoots of ryegrass 
at concentrations greater than 1 μM (Figure 2). The inhibitory activity 
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Figure 1: Effect of Momilactone A on the root and shoot growth of ryegrass. Means ± SE from 6 independent experiments with 30 plants for each determination are shown.
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Figure 2: Effect of Momilactone B on the root and shoot growth of ryegrass. Means ± SE from 6 independent experiments with 30 plants for each determination are shown.
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was also dependent on momilactone B concentration. The equation 
of the significant logistic functions of momilactone B was Y=[(1.638-
98.472)/{1+(X/6.886)0.077}+98.472]; (r2=0.995) and Y=[(0.934-98.733)/
{1+(X/6.423)0.821}+98.733]; (r2=0.996) for the roots and shoots, 
respectively. The concentrations required for 50% growth inhibition 
(defined as I50) for roots and shoots of ryegrass were calculated from 
the equations of the logistic functions (Table 1). Comparing those 
values, inhibitory activity of momilactone B on ryegrass root and 
shoot growth, respectively, was 13.3- and 21.2-fold greater than that of 
momilactone A.

Inhibitory activity of momilactone A and B on Arabidopsis, alfalfa, 
lettuce, cress, timothy, barnyard grass, E. colonum, and crabgrass were 
also determined at concentrations of 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 
100, 300, 1000, 3000 and 10000 μM. Momilactone A and B, respectively, 
inhibited the growth of these plant roots and shoots at concentrations 
greater than 3-30 μM and 0.3-10 μM, respectively. The inhibition on 
those test plants of momilactone A and B was concentration dependent 
and the significant logistic functions were obtained for all test plant 
species. I50 values were then determined by the equations of the logistic 
functions as described above (Table 1). Comparing I50 values, the 
inhibitory activity of momilactone B on root and shoot growth of those 
test plant species was 5.6- to 22.2-fold greater than that of momilactone 
A. 

I50 values of momilactone A on monocotyledonous plants (timothy, 
barnyard grass, E. colonum and crabgrass) were 66.7 to 98.5 μM and 
138 to 275 μM for roots and shoots, respectively, and I50 values of 
momilactone B on monocotyledonous plants were 5.6 to 9.5 μM and 
6.3 to 12.4 μM for roots and shoots, respectively (Table 1). On the 
other hand, I50 values of momilactone A on dicotyledonous plants 
(Arabidopsis, cress, lettuce and alfalfa) were 204 to 479 μM and 86.2 - 
395 μM for roots and shoots, respectively, and I50 values of momilactone 
B on dicotyledonous plants were 9.8 to 67.3 μM and 12.4 to 82.4 
μM for roots and shoots, respectively. Therefore, the sensitivities of 
monocotyledonous plant species to momilactone A and B were greater 

than those of dicotyledonous plant species except for Arabidopsis. 
Sensitivity of Arabidopsis was similar to that of monocotyledonous 
plants. 

In addition, it was reported that momilactone A and B inhibited the 
growth of Amaranthus lividus and Poa annua at concentrations greater 
than 20 ppm (ca. 60 µM) and 4 ppm (ca. 12 µM), respectively [38]. 
The growth inhibitory activities of momilactome B are also greater than 
those of momilactone A under other bioassay systems [25,32,39-42]. 

Inhibitory activities of momilactone A and B on rice

Momilactone A and B inhibited the growth of all plant species 
including the weed plants at μM level (Figures 1 and 2 and Table 1). 
Rice plants produce momilactone A and B and secret momilactone 
A and B into the rhizosphere [31,32,34]. Thus, the growth inhibitory 
activities of momilactone A and B against rice plants themselves were 
determined at concentrations of 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 
300, 1000, 3000 and 10000 μM. Effectiveness of momilactone A and 
B on rice cultivars, Koshihikari, Nipponbare, Norin 8 and Sasanishiki 
was weak. Momilactone A and B only inhibited root and shoot growth 
of all rice cultivars at concentrations greater than 100 and 300 μM, 
respectively. 

I50 values of momilactone A and B on rice root and shoot were 
not obtained because of their weak inhibitory activities. Thus, the 
concentrations required for 25% growth inhibition (defined as I25) for 
roots and shoots of rice were calculated from the equations of the logistic 
functions (Table 2). Comparing I25 values, the inhibitory activities of 
momilactone B on the rice root and shoot growth, respectively, were 
3.1- to 4.1-fold and 2.4- to 3.7-fold greater than those of momilactone 
A, which was consistent with results obtained with other plant species 
(Table 1). 

I25 values of Arabidopsis, alfalfa, lettuce, cress, timothy, barnyard 
grass, E. colonum, crabgrass and ryegrass were 10.2 to 88.7 μM and 
2.1 to 41.6 μM for momilactone A and momilactone B, respectively 

Momilactone A
　

Momilactone B
　

Ratio 
(Momilactone A/Momilactone B)

　 Root Shoot Root Shoot Root Shoot
Arabidopsis 204 ± 12 86.2 ± 7.1 9.8 ± 1.1 12.4 ± 1.1 20.8 7.0

Alfalfa 379 ± 19 315 ± 29 67.8 ± 5.3 82.4 ± 6.7 5.6 3.8
Lettuce 472 ± 37 395 ± 31 54.3 ± 4.5 77.9 ± 6.7 8.7 5.1
Cress 476 ± 32 337 ± 27 35.4 ± 3.1 40.5 ± 4.3 13.4 8.3

Timothy 76.5 ± 6.3 157 ± 12 5.6 ± 0.4 7.9 ± 0.8 13.7 19.9
Barnyard grass 91.2 ± 7.2 145 ± 11 6.7 ± 0.4 6.3 ± 0.4 13.7 23.0

E. colonum 66.7 ± 5.4 238 ± 21 7.2 ± 0.5 11.6 ± 0.8 9.3 20.5
Crabgrass 98.5 ± 7.3 275 ± 19 9.5 ± 0.6 12.4 ± 1.1 10.3 22.2
Ryegrass 91.9 ± 8.3 138 ± 12 6.9 ± 0.4 6.5 ± 0.3 13.3 21.2

Table 1: I50 values (μM) of momilactone A and B on root and shoot growth of test plants and the ratio of I50 values of momilactone A and B. The values were determined by 
the logistic functions as described in the text. Means ± SE from six independent experiments with three Petri dishes for each experiment are shown.

Momilactone A Momilactone B Ratio 
( (Momilactone A/Momilactone B)

Rice cultivar Root Shoot Root Shoot Root Shoot
Koshihikari 843 ± 76 967 ± 84 214 ± 18 278 ± 23 3.9 3.4
Nipponbare 956 ± 87 976 ± 92 314 ± 26 401 ± 34 3.1 2.4
Norin 8 805 ± 75 924 ± 85 195 ± 21 249 ± 19 4.1 3.7
Sasanishiki 911 ± 91 974 ± 76 245 ± 19 301 ± 23 3.7 3.2

Table 2: I25 values (μM) of momilactone A and B on root and shoot growth of rice plants and the ratio of I25 values of momilactone A and B. The values were determined by 
the logistic functions as described in the text. Means ± SE from six independent experiments with three Petri dishes for each experiment are shown. 
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(Table 3). Comparing I25 values, the effectiveness of momilactone A and 
B on the root and shoot growth of rice cultivars was much less than 
that of weed plant species, barnyard grass, E. colonum, crabgrass and 
ryegrass. Barnyard grass is the most significant biological constrain to 
rice production [43]. 

The effectiveness of momilactone A and B on the growth of those 
rice cultivars was much less than that on the growth of barnyard grass. 
In addition, no visible damage to rice cultivars by momilactone A and 
B was observed at levels that are cytotoxic to these other plant species. 
These results suggest that the toxicities of momilactone A and B to 
rice cultivars may be much less than those to other plant species. The 
basis for rice resistance is currently unknown, but presumably involves 
either efflux (e.g. via the same transport mechanism responsible for 
momilactone secretion), insensitivity of the molecular target, and/or 
degradation. 

Conclusion
Rice allelochemicals momilactone A and B inhibited Arabidopsis, 

alfalfa, lettuce, cress, timothy, barnyard grass, E. colonum, crabgrass and 
ryegrass by concentration dependently (Figures 1 and 2 and Table 1). 
However, the ability of momilactones A and B to suppress the growth 
of rice was by far less than their effects on other plant species (Table 2). 
Allelopathic substances have potential as either herbicides or templates 
for new synthetic herbicide classes [6,7,10,12,44,45]. 

Natural compounds are considered to be more environmentally 
benign than most synthetic herbicides [12]. In many cases, the 
natural compounds are also highly active at a molecular target site 
[45]. Momilactone A and B may have potential as a template for the 
development of new plant control substances because their selective 
inhibitory activities for weed plant species. More importantly, 
identification of momilactone A and B as allelochemicals in rice 
provides a molecular marker for breeding and/or engineering efforts 
directed at increasing allelopathic activity of this critical staple food 
crop.
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