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Abstract
Urethral reconstruction is still a big challenge in urology. Traditionally, the penile skin or buccal mucosa was used 

as graft for replacement. However, the morbidity of the donor site was reported previously. Furthermore, there is a 
lack of an adequate autologous donor graft in many cases. The tissue engineered urethra may provide an alternative 
to the reconstruction. Herein, we reviewed the biomatrices for urethral substitution either in animal model or in clinical 
cases. 
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Introduction
Various urethral disorders, such as hypospadias, stricture, require 

surgical reconstruction [1-3]. The most commonly used sources 
of graft were penile skin or buccal mucosa [4-7]. However, in many 
circumstances, an adequate amount of those tissues was not available. 
In addition, a number of surgical complications were described in 
previous studies, including prolapse and stricture recurrence [8-10]. 
Furthermore, bothersome donor site morbidity was associated with 
buccal mucosa, such as pain, numbness, ulceration and difficulty 
in opening mouth [11]. Penile skins also have the potential risk of 
subcutaneous bleeding, infection and the dorsal nerve injury [12].

Recently, the development of regenerative medicine provided 
novel biomaterials for urethral reconstruction, including natural 
decellularized matrix, protein derived scaffolds and synthetic polymers. 
The modification of those materials, such as oxidation with 5% 
peracetic acid (PAA) or stretch in 90% ethanol, further improves their 
microstructure and biocompatibility. Herein, we reviewed biomaterials 
for urethral replacement in brief.

Natural Collagen Based Matrices
The natural collagen based matrices were derived from 

decellularized heterogenic tissue, including small intestinal submucosa 
(SIS) [13-15], bladder accellular matrix (BAM) [16-18], accellular 
corpus spongiosum matrix (ACSM) [19] and accellular dermal matrix 
(ADM) [20]. Bhargava et al. [20] firstly used ADM and oral cells to 
fabricate tissue engineered buccal mucosa to repair long complex 
urethral stricture in 5 patients, the urethra successfully regenerated 
in 3 of them and maintained functional at mean follow-up of 8 years, 
however, 2 of them resulted in complete or partial graft removal. Such 
natural collagen based material for urethral reconstruction was far from 
ideal. Although the accellular matrix contains biological molecules 
beneficial for cell growth, there are two main disadvantages that limit 
further application. One of them is the high density of the material 
that prevents the transport of nutrient, air and metabolic substance. 
Another one is the retained heterogenic nuclear components which 
lead to chronic inflammation, fibrosis and calcification [21, 22].

Liu et al. [21] and Wu et al. [22] reported that 5% paracetic acid 
(PAA) treated SIS and BAM increased the porosity of the fresh SIS, 
decreased the heterogenic cellular component, and prompted cell 
proliferation in vitro and in nude mice model. Initially, it was presumed 
that the maximum distance of the complete healing from the wound 
edge was 1 cm in a rabbit model [23]. However, Huang et al. [24] 
demonstrated that unseeded 5% PAA modified BAM could repair long 
urethral defect (1.5 × 0.8 cm2). In our previous study, we found that 5% 

PAA treated SIS increased porosity and prompted cell proliferation. In 
addition, such modified SIS seeded with cells can repair larger urethral 
defect (1.7 × 1 cm2, Figure 1), the urothelium, smooth muscle and 
vessel regenerated completely, however, fistula or stricture occurred in 
unseeded SIS or cell seeded non PAA treated SIS group [25]. Therefore, 
we considered that cell seeded scaffold and 3-dimension porous 
microstructure are two important factors to prompt tissue regeneration 
for large urethral defect. 

Protein Derived Scaffolds and Cellulose
Silk fibroin (SF) is a novel protein obtained from Bombyx mori 

cocoons that have good biocompatibility and low immunogenicity 
[26,27]. The mechanical property and microstructure of was improved 
after it was stretched in 90% ethanol [28]. Both accellular and cell seeded 
SF showed good efficacy in urethral reconstruction in animal model 
[26,29,30]. Recently, Lv et al. [31] reported a novel oxygen-generating 
material composed of SF, keratin, calcium peroxide and gelatin. This 
study showed 3D porous structure, high mechanical property and steady 
release of oxygen, which improved the urethral tissue regeneration in 
dogs. There were two novel modified scaffolds using collagen-binding 

Figure 1: Urethral reconstruction procedure. A) The urethral mucosa was exposed; B) Penile mucosa was excised; C) The graft 
was sutured to the wound edge. Figure 1: Urethral reconstruction procedure. A) The urethral mucosa was exposed; 

B) Penile mucosa was excised; C) The graft was sutured to the wound edge.
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VEGF or collagen/poly (L-lactide-co-caprolactone)-binding Wnt 
signal inhibitor for urethral reconstruction, both of them showed good 
efficacy in urethral reconstruction in an animal model [32]. 

Bacterial cellulose (BC) is obtained from Acetobacter xylinum, it has 
satisfactory mechanical property, nanostructure and biocompatibility 
[33]. However, its compact density limits its further clinical application. 
Huang et al reported that 3D porous structure of BC was formed 
following the treatment of gelatin, but the mechanical property was 
still maintained, with the mean tensile strength from 30.45 ± 6.78 Mpa 
to 16.6 ± 2.47 Mpa. Such modified BC enhanced cell proliferation in 
vitro and also prompted urethral epithelium, smooth muscle, vessel 
regeneration in an animal model [34]. 

Synthetic Polymer
Synthetic polymer materials were once used commonly, such as 

PGA, PLGA and the compound of PGA:PLGA [35,36]. They avoid 
potential heterogenic pathogen infection, and have ideal fiber diameter 
[19]. Raya-Rivera et al. [36] reported that urothelial cell seeded in 
PGA:PLGA successfully repaired complex urethral stricture in 5 
children. The urethrography and flow rate demonstrated the tissue 
engineered urethra demonstrated wide caliber and satisfactory voiding 
function. However, the synthetic polymer has poor biocompatibility, 
and lacks adequate bioactive molecules for cell growth. In addition, it 
was reported that the degraded substances of the synthetic polymers 
caused chronic immunogenicity, and development of fibrosis in long 
term follow up [37].

Conclusion and Future Directions
Compared to traditional non modified biomaterials for urethral 

reconstruction, the novel biomaterials generally have higher porosity 
and better histocompatibility. However, the procedure of fabricating 
such novel materials for urethral replacement is relatively more 
complicated, including oxidation with 5% PAA and biological molecules 
binding scaffolds and electrospun biomaterials. 

Reconstruction of the urethra is one of the biggest challenges in 
urology, especially for those patients with long complex extensive 
fibrosis and stricture. The vascular bed was destroyed in most cases, 
so the ideal scaffold should be equipped with degradable 3D porous 
structure to transport the nutrient to the new tissue, exhibit least 
immunogenicity and can promote neovascularization. Besides, it 
should also have suitable mechanical property because of the elastic 
nature of the corpus spongisum. Future studies should be conducted 
to find the most suitable biomaterials for the urethral reconstruction 
before its widespread clinical application.

Since the stricture recurrence in clinical cases is relatively high, the 
underlying mechanisms for the recurrence need to be clarified. The 
animal models that imitate the urethral stricture in clinical cases should 
be constructed for further study of the efficacy of different materials in 
urethral replacement.
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