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Abstract 
Recent years have seen the rapid development of biosensor technology, system-on-chip 
design and wireless technology and ubiquitous computing. When assembled into an 
autonomous body sensor network (BSN), the technologies become powerful tools in well-
being monitoring, medical diagnostics, and personal connectivity. In this paper, we describe 
the first demonstration of a fully customized mixed-signal silicon chip that has most of the 
attributes required for use in a wearable or implantable BSN. Our intellectual-property 
blocks include low-power analog sensor interface for temperature and pH, a data 
multiplexing and conversion module, a digital platform based around microcontroller, data 
encoding for spread-spectrum wireless transmission, and a RF section requiring very few 
off-chip components. The chip has been fully evaluated and tested by connection to external 
sensors, and it satisfied typical system requirements. 
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1. Introduction  

The ability to integrate complete sensor systems into a very small form factor is of growing 
importance as applications such as ubiquitous computing [1], micro total-analytical-systems (TAS) 
[2], wearable electronics [3], and body sensor networks (BSN) [4], [5] become more widespread. One 
of the earliest examples of these technologies was demonstrated by Mackay in 1961 [6]. An 
important aspect of Mackay’s work was that his device was made possible by the then relatively 
recent invention of the transistor. More recent developments have sought to make use of recent 
technological developments. Examples are the development of Smart dust that uses micro-
electromechanical systems technology to explore the extremes of miniaturization [7], micro-robotics 
for gastrointestinal investigation [8] and other sophisticated BSNs using discrete electronics 
components-based devices [9]. Quite often, the relative large size of these devices significant limits 
the performances as well as the pervasive deployments. 

In this paper, we describe the development of a wireless biomedical sensor interface system-on-
chip (SOC) that aims to combine many of the functions of the BSN micro-systems onto a single 
substrate. Our design is specified for a biosensor system with up to eight pH and temperature data 
channels communicating via an encoded wireless interface to a remote base station. The system 
comprises analog sensor interface circuit, data-conversion circuits, a microcontroller, a data encoder, 
and a frequency-shift keying (FSK) RF transmitter. Many of the system blocks were imported in an 
intellectual-property (IP) block form; thus, the design represents the first steps toward a generic 
BSN-on-chip [10]. 

2. Wireless Sensor Interface System On Chip  

Fig. 1 shows the complete system diagram of the SOC we have developed. The design flows used 
to create the SOC was relatively straightforward. Cadence tools were used for analog/digital 
simulations and back-end design tasks and Synopsys tools were used for digital synthesis of 
VHDL/Verilog behavioral and register transfer-level descriptions. Transistor-level and gate level 
simulations were used to verify that all functional blocks worked as desired before chip assembly 
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and implementation. The microcontroller block was verified by writing to a XILINX SPARTANII-
FPGA, followed by board-level testing to ensure proper functionality before committing to silicon (Si) 
[11].  

 

 
 

Figure 1: Schematic diagram of the system-on-chip architecture 

 

 
 

Figure 2: Schematic of the pH sensor circuit. 

 
2.1 Sensor Interfaces 

The SOC operates with external pH (acidity/alkalinity) and temperature sensors. The pH sensor 
used here is an ion-sensitive field-effect transistor (ISFET) and has a Nernstian response with respect 
to pH [4]. Unfortunately, this device also has a response to temperature change that must be 
calibrated for. As a consequence, the temperature sensor is not only required to provide a 
temperature reading per se, but is also required to enable calibration of the pH sensor. The external 
temperature sensor is a forward biased pn-junction with a junction area of 0.6 mm. The interface 
circuit is a conventional structure that connects the diode in feedback across an operational amplifier 
with a constant bias current. An on-chip bias resistor sets the constant current to be approximately 
15A. The reverse bias saturation current of the diode is 30 pA and the ideality factor is approximately 
2; therefore, the device sensitivity 22 C, but does vary from device to device due to tolerances. The 
external pH-ISFET sensor forms the load of a 33- A cascade current sink as shown in Fig. 2. The ISFET 
is similar to a MOSFET device where the gate metal was replaced by a reference electrode immersed. 
The ISFET has an intrinsic gate referred sensitivity of a 43-mV/pH point. For circuit implementation, 
the cascade structure of the current source allowed a high impedance to be obtained, which reduced 
the variations of the drain-source current due to the fabrication, temperature, and power-supply 
variations. The output transistors of the cascade circuit form an active load to the ISFET that is 
configured as a source follower; thus, the voltage swing at the source of the ISFET responds at the 43-
mV/pH point. 
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2.2 Mixed-Signal System Platform 
The analog-to-digital interface circuitry comprises seven 2-input multiplexers and a 10-b 

successive approximation analog-to-digital converter (ADC). Power supplies were directly connected 
as the reference voltages of the ADC. The microcontroller-driven multiplexers allow eight sensor 
channels to be presented to a single ADC for 0.3 ms each, hence, 2.4 ms is required to sample all eight 
channels. However, the system sample rate was set to be approximately 0.5 S/s, by which we mean 
all eight channels are sampled once every 2 s. In order to minimize the off chip component count, 
hence, the overall packaged system size, we used an on-chip RC relaxation oscillator to generate the 
input to the chip timer circuit. 

The first-order relaxation oscillator was based on charging or discharging an on-chip timing 
capacitor via a precision current source, which provided a cost-effective solution as well as design 
simplicity and programmable ability. The oscillation frequency of the relaxation oscillator was 
proportional to the value of the charging current and was inversely proportional to the value of the 
timing capacitor. The relaxation oscillator circuit was designated with an operational trans-
conductance amplifier, a comparator, an inverter, the sampling switches and capacitor, and a 
controlled current source. The relaxation oscillator has an automatic swing control loop to rectify the 
oscillation amplitude adaptively in order to provide symmetrical oscillation waveforms. 

The timing precision of the oscillator is poor due to the fabrication tolerance of on-chip resistors 
and capacitors, but this imprecision is not important in the context of the complete system [13]. The 
nominal frequency of the RC oscillator is set to be 8 MHz, but it measures only 7.1 0.1 MHz on a batch 
of ten fabricated chips. The timer circuit contains a digital divider designed to generate different 
clocks for the ADC (250 kHz), the microcontroller (250 kHz), and the data encoder (32 kHz). The 
clock rates for these blocks are 224 kHz, 224 kHz, and 29 kHz, respectively because of the shift of the 
nominal oscillator frequency. The timer can generate the originally intended clock frequencies when 
it is connected to an oscillator implemented in the RF section of the SOC, but this requires an 
additional off-chip surface-acoustic-wave (SAW) resonator and two resistors. However, in order to 
save power, the RF oscillator is not used for timing, but only when wireless transmission is required 
(see Section II-C). In addition to generating the system clocks, the timer also generates a positive 
pulse (lasting 5 s) every two seconds to start the microcontroller. 

The microcontroller was designed by us to have the identical instruction set, excluding the 
multiply (MUL) and WAIT instructions, as a Motorola 6805 CPU. The microcontroller was designed to 
be fully static and was implemented with 512-B ROM, 32-B RAM (24 B for buffers and 8 B for stack), 
three bidirectional 8-b input/output (I/O) ports and a 16-b capture/compare timer system. The 
software routines, embedded into the 512-B ROM, were used for scheduling different tasks, such as 
channel cycling, data sampling and packet forming, and automatically go into a sleep mode when all 
tasks are finished. However, every two seconds, the aforementioned positive pulse generated by the 
timer invokes a rising-level sensitive interrupt of the microcontroller, and forces the microcontroller 
to go back to an active mode. This external interrupt design enables dynamic re-configuration of the 
system sample rate [14]. For example, by simply setting different time intervals between the positive 
pulses, the microcontroller can be invoked at varying time intervals in order to suit different 
applications and data needs. All output data are represented as a serial bit-stream packet by the 
microcontroller. One packet has two identical data episodes with a total of 192 information bits. Each 
episode begins with eight start bits with a well-defined signature, eight channels (8-b  each) of 
physiological data plus an even parity bit, two 8-b buffer contents (for ID and future expansion) and 
an 8-b stop sequence. There are 64 ‘0’ b between two consecutive packets. The microcontroller was 
programmed for the duration of representing each bit to be 7.81ms. In practice, it takes 8.7 ms to 
represent each bit because of the shift of the clock rate from 8 MHz to 7.1MHz. Therefore, the 
microcontroller’s serial port data rate is approximately 115b/s. The bit stream signal from the 
microcontroller is fed into a programmable transmitter for wireless transmission. 
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Figure 3: Block diagram of the direct-sequence spread-spectrum transmitter 

 
2.3 Wireless Interface 

In order to improve the wireless transmission reliability, a programmable direct-sequence 
spread-spectrum (DS-SS) transmitter is integrated into the SOC with very few off-chip components 
[5]. The transmitter comprises a data encoder and RF-section. A block diagram of the transmitter is 
shown in Figure 3. The multiplication process is a simple modulo-2 adder that also acts as a phase 
modulator. The core of the DS-SS transmitter is the pseudorandom noise (PN) code generator [6]. 
The PN code generator consists of an eight-stage linear feedback shift register (LFSR) and a 
multiplexer. The PN code length was programmable to provide the appropriate amount of data 
spreading for a particular application. The transmitter also comprises a memory block for storage of 
data. In the LFSR implementation, the all 0 state (all 1 state if XNOR is used in the feedback path) is 
not allowed. In the design, this was prevented by an additional control circuit. This rearrangement 
also enables the generation of even length PN codes by inserting an additional 0 to give a maximal 
LFSR sequence. Serial bit-stream data to be transmitted are coded by either the PN code if the bit is 
logic 0 or a 180 phase-shifted version of the PN code if the bit is logic 1. This coding is performed 
automatically by the EXOR operation. For a PN code length of 256, 128, 64, and 32 b, it takes 
approximately 34 s, 68 s, 136 s, and 273 s, respectively, to present one code. The minimum data rate 
from the encoder is approximately 3.67 kb/s, which is 32 times the microcontroller’s serial port data 
rate (115b/s). 

The integrated RF section on the SOC could be activated. The amplification stage of the RF 
session was elaborated to be a near-class-E RF power amplifier that was driven by the encoder’s 
digital output. A two-stage driving amplifier was utilized. The gain budget of this amplifier was 
carefully asserted to maintain high gain and linearity while limiting the total current. The amount of 
amplitude and bandwidth extensions was optimized for this design in order to minimize data jitter. 
In the output stage, the back-termination poly-silicon resistors were used to reduce reflections from 
output ports. A relatively low carrier frequency was selected for the on-chip RF section. This is 
because, applications, such as the implantable laboratory-in-a-pill in-situ experiments, have 
confirmed that low-frequency signals are less strongly absorbed [7], [8] and regulatory requirements 
allocated for 30MHz. The carrier frequency signal was generated directly by using an oscillator with 
an external SAW resonator, rather than by having a low-frequency oscillator multiplied up to the 
desired frequency. For exploratory purposes, the RF section had two resonator controlled oscillators, 
each with a frequency-shift keying (FSK) modulator and an output stage. One was a Pierce circuit and 
the other was a Colpitts oscillator. The circuits’ satisfied the Barkhausen criterion with closed-loop 
gain1 and the phase shift of the signal from the input to the output of the amplifier was 180. To 
achieve low phase noise, only one active transistor was used in the core circuits. Negative resistance 
was created by using the RF-NMOS transistor in the common source configuration for the Pierce 
oscillator and the common gate configuration for Colpitts oscillator. The SAW resonator was used as 
a frequency determination element between the drain and the gate of the NMOS transistor for the 
Pierce oscillator, and the source and the gate for Colpitts oscillator, respectively. A variable capacitor 
in series with the SAW resonator was used to generate FSK modulation. The main advantage of using 
the SAW resonator was relatively high quality factor and relative low power consumptions. Test 
results showed that the Colpitts oscillator consumed less power (5.1 mW at 3.0 V) than the Pierce 
oscillator (8.1 mW at 3.0 V). An on-chip spiral inductor (approximately 800µm X 300µm) 
incorporated on the SOC can be used. The radiated signal from the inductor was detectable at a range 
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of 0.5 m in air using a Win radio receiver with a conventional whip antenna at a data rate of up to 5 
kb/s. Therefore, the encoder data rate is always set to be 3.67 kb/s. Tests indicated that the on-chip 
inductor was less efficient than an external antenna; however, it demonstrated the possibility of 
integrated antennas on silicon [2].  

The signal from the SOC is detected by a data-acquisition (DAQ) device. Since the DAQ terminal 
uses a correlator implemented on a PC in software, the synchronization requirement between the 
SOC and the terminal was significantly reduced. The correlator will yield a positive peak at 0 phases 
and a negative peak at 180 phases. Data can be simply recovered by thresholding the correlator 
output. Fig. 4 shows an experimentally obtained decoded signal after normalized autocorrelation, 
with the on-chip RF section activated. It shows that different bit values (1 or 0) were correctly 
recognized despite the noisy background introduced by the wireless interfaces. We conclude that the 
programmable transmitter provided an adequate wireless interface in a noisy environment by 
rejecting narrowband interference. 

 

 
Figure 4: Experimentally obtained trace of ‘0’s and ‘1’s with value (after normalized correlation) 01 and 1, 

respectively. 

 
Figure 5: Micrograph of the fabricated system on-chip showing the system blocks 

 
 

Blocks Core Pad Area(mm2) Number of Transistors 

Sensors Interfaces  Core 2.4 4100 

Timer Core 0.2 2000 

MCU Core 2.6 35000 

Data Encoder Core 0.1 1200 

RF Section  Core 0.5 20 

Pad Rings Core Pad 10.5 0 

Total  Core Pad+ 16.8 42000 
 

Table 1: Area and gate count for the SOC 
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3. Chip Assembly 

The sensor interfaces, the system platform, and the wireless interface were implemented on a 
4.1 mm 4.1-mm mixed signal SOC prototype, including a second ring of m pads, added to ease manual 
bonding in micro-system prototypes. The chip was fabricated using a three-metal, 2-poly 0.6- m 
CMOS process provided by the AMS. Finished chips were returned as unpackaged die (Fig. 5) and in 
84-pin J-leaded ceramic chip carrier (JLCC) packages for test purposes. Table I indicates the number 
of gates and silicon area corresponding to individual circuit blocks. The size of the SOC prototype, 
excluding the second pad ring, is core limited, its core occupying a total of 6.3 mm of silicon area. Of 
the 84 pads, 24 are power pads and 60 are input/output (I/O) pads, more than 75% of which are 
used for the preliminary chip test. 

The design of a multifunctional SOC creates many problems due to individual components 
contributing to the overall noise budget. Previous designs [6] have shown that the limiting factor on 
noise is on-chip substrate noise due to clock transmission rather than thermal or shot-noise sources 
in the sensor architecture. We have therefore given great consideration to chip-assembly and routing 
in order to minimize on-chip coupling as far as possible using conventional layout techniques. 

The SOC was designed to minimize the propagation of noise from the noisy 40-MHz RF oscillator 
(with the on-chip RF oscillator activated) to the noise-sensitive sensor interface circuitry, and 
particularly to the operational amplifier input nodes. These circuits were physically isolated on the 
silicon die, their power supplies were separated inside the chip, and additional substrate noise 
barriers (guard rings) were placed around them. More-over, the core and pad ring power supplies 
were also separated inside the chip, and the pad ring was split into analog, digital, and RF sections to 
inhibit noise from propagating through the power lines. Finally, approximately 20 pF of power-
supply decoupling capacitance was distributed between different rails (i.e., RF ground and analog 
ground [11]. 

Testing of the SOC revealed that the biggest contributor of noise that reaches the analog 
amplifier inputs is the resonator- controlled oscillator within the RF section. It generates 15 Mv and 
25 mV of noise at 20 MHz and 40 MHz, respectively, as measured at the operational amplifier input 
nodes. The on-chip RC oscillator operating at 7.1 MHz generates 13 mV of noise as measured at the 
operational amplifier input nodes and produces lower peak-to-peak noise in the same measurement 
configuration. The total noise measured on an output pin from the analog circuit [before the analog-
to-digital converter (ADC)] of the SOC, when powered by two batteries, is equal to 15 mVrms. 

4. System Performance 

In addition to evaluating each individual block, we have tested the performance of the complete 
integrated system. A complete functional flows of the SOC, from sensors to a DAQ device, was 
demonstrated. 

 
4.1 Power Consumption 

A printed-circuit board (PCB) was used for SOC testing. The packaged SOC was plugged into the 
PCB and powered by two SR44 silver-oxide cells attached using short leads. The battery voltage 
decreases with use and the average current consumption of the SOC for different battery voltages is 
measured. The largest power consumption is from the sensor interfaces and RF sections, which are 
1.9 mA at 3 V and 1.7 mA at 3 V, respectively. With the on-chip RF section activated, the maximum 
measured power consumption for new batteries was 18 mW, decaying to 8 mW for batteries 
approaching the end of their life-time. No significant perform deteriorations were affected by 
decreasing battery levels within the battery operation ranges. 

 
4.2 Functionality 

To demonstrate the functionality of the sensor interfaces and the system platform, a temperature 
sensor and a pH sensor (as described in Section II-A) were connected to the sensor interface 
circuitry. The binary output signal from the microcontroller’s serial port was fed into a DAQ package 
(National Instruments DaqPad-6020E) with a wired setup. A laptop computer with appropriate 
software was configured for use as the DAQ and data presentation terminal. A data-processing 
algorithm using oversampling was developed in MATLAB and used to recover the raw sensor 
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information [12]. The oversampling rate was 1 kS/s (the microcontroller’s data rate is 115b/s). For 
calibration purposes, the sensors were first dipped into specified pH buffer solutions at known 
temperatures in the range 30 to 90 C. Once calibrated, approximately 25 min of data were acquired 
for each experimental run. Readings from standard temperature and pH meters were simultaneously 
recorded for comparison. From this study, we were able to confirm that the sensor interfaces and the 
system platform were working together as described in Sections II-A and B. 

Finally, the SOC, consisting of the sensor interface, the system platform, and the complete 
wireless interface was tested. The output of the digital encoder was fed into the on-chip RF section 
using an external SAW resonator to tune the transmitter. The data-processing algorithm at the 
receiver was updated to use the correlation computations described in Section II-C to accommodate 
the new signal. The PN code was selected to give the lowest data transmission rate of 3.67 kb/s. The 
oversampling rate of the DAQ device was set to be 10 kS/s in order to correctly sample the signal. 
The same scan receiver was used for continuity. In-vitro results indicate the complete SOC works as 
intended. The results are comparable with those obtained by using the external TX module. 

5. Conclusion 

We have presented a fully specified and functional biomedical sensor interface system-on-chip to 
acquire, process, and communicate sensor data wirelessly. The design represents a prospective BSN-
on-chip framework using IP blocks that we have developed by ourselves. The intellectual-property 
blocks include the analog sensor instrumentation for temperature and pH, a data multiplexing and 
conversion module, a digital platform based around an 8-b microcontroller, data encoding for 
spread-spectrum wireless transmission, and an RF section requiring very few off-chip components. 
We believe that the concept we present here can be greatly developed to introduce sensor-SOC into a 
diverse range of BSN applications. 
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