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Abstract
Phosphorus (P) is one of the most essential macronutrients required for the growth of plants and is added 

to soil in the form of phosphatic fertilizers. However, because of mineral re-precipitation, large amount of applied 
phosphate fertilizer may become unavailable to the plant. The ability of soil microorganisms to transform insoluble 
forms of phosphorus to an accessible form is an important path in plant growth-promoting for increasing plant yields. 
In this study, Aspergillus Niger, a fungal strain isolated from agricultural soil samples, was tested for its ability to 
solubilize different phosphated matrixes (TCP, DCP, phosphates rock). The isolated fungus exhibits high capacities 
to solubilize all tested phosphates. The solubilization of insoluble phosphates was associated with a drop in the pH 
of the culture medium. The fungal biomass was entrapped in alginate and polyacrylamide gels and was used for 
solubilizing mineral phosphates in fluidized bed bioreactor. The highest specific solubilization rates were obtained 
when A. Niger was entrapped in alginate beads. The use of the bioreactor in consecutive cycles of solubilization 
showed the interest of the biomass immobilization in the stability of the bioreactor. Immobilized cells in alginate 
continuously solubilize phosphate even after 5 cycles of solubilization without loss of activity. The phosphorus 
biosolubilization performances of isolated strains may open new possibilities for their biotechnology application and 
allow the use of this fungus in the soil fertilization.
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Introduction
Phosphorus is an essential macronutrient for plants and is added to 

soil in the form of phosphatic fertilizers. However, the applied quantity 
of soluble forms of phosphate fertilizers is easily precipitated into 
insoluble forms and is not efficiently taken up by the plants [1-4]. Use of 
phosphatic fertilizers has become a costly affair, also environmentally 
undesirable and there is need for alternative sources [5].

The ability of microorganisms to solubilize different forms of 
calcium phosphate has been reported [6-8]. The solubilization of 
inorganic phosphates by microorganisms supplies phosphates for plant 
nutrition and increases their growth [9,10]. The attractive approach of 
microbially mediated solubilization of phosphate has been successfully 
proved in soil conditions which resulted in agriculture production 
similar or better than achieved with soluble phosphate [11,12]. 

Phosphate solubilizing microorganisms convert insoluble 
phosphates into soluble forms through the processes of acidification, 
by the production of organic acids [13-15], production of acid and 
alkaline phosphatases [2] and to H+ production [16]. These organic 
acids can either dissolve phosphates as a result of anion exchange or 
can chelate Ca, Fe or Al ions associated with the phosphates [17].

A substantial number of microorganism species, mostly those 
associated with the plant rhizosphere have been isolated and 
characterized for their ability to solubilize unavailable reduced 
phosphorus to available forms exerting a beneficial effect upon plant 
growth [6-8]. It was assumed that phosphate-solubilizing activity was 
greater for filamentous fungi than for bacteria [18].

Immobilization of living microorganisms has been described by 
several investigators [19,20] to be useful in several biotechnological 
applications. It is widely known that immobilized cells offer a lot of 
advantages: reusability of the same biocatalyst, control of reactions, 
and the no contamination of products [21].

The main objective of this study was to examine the abilities of 

Aspergillus niger, isolated from agricultural soil, to solubilize different 
insoluble phosphate substrates (DCP, TCP and Rock phosphates) at 
different culture conditions.

Materiel and Methods
Microorganisms

Phosphate-solubilizing microorganisms are isolated from 
rhizospheric samples by plating serial dilutions of rhizospheric soil 
extracts in NBRIP solid medium (glucose 10g, MgCl2.6H2O 5g, 
MgSO4.7H2O 0.25g, KCl 0.2 g and (NH4)2SO4 0.1g, agar 15g, H2O 1L) 
supplemented with 5g/l of TCP [22]. That medium contains insoluble 
tri-calcium phosphate allowing the detection of phosphate solubilizer 
microorganisms by the formation of “halos” around their colonies. 

All plates were incubated at 30°C for 1 week. Colonies surrounded 
by solubilized clear zone were picked and streaked onto NBRIP plates 
containing 5g/l of TCP. Plates were again incubated at the same 
conditions to confirm their abilities to solubilize insoluble phosphate. 
Stock cultures were routinely maintained on LB agar supplemented 
with 1% of glucose.

Among the isolated strains, Aspergillus niger showing higher 
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phosphate solubilization ability (larger solubilization halo surrounding 
the colony) in NBRIP plate was selected for further study. It was 
identified based on the visual observation of isolates grown on PDA 
plates, micro-morphological studies in slide culture [23] at room 
temperature, and the taxonomic keys described by Hoog and Guarro 
[24] as well as the compendium of soil fungi [25]. 

Stock cultures of isolated strain were routinely maintained on a 
potato dextrose agar (PDA). 

Phosphate solubilization in solid media
One fungal isolate with higher phosphate solubilization abilities 

was selected. Abilities of the isolated fungus to solubilize different 
kind of insoluble phosphates were investigated. For this, the NBRIP 
plates supplemented with DCP, TCP or natural rock phosphates PR1, 
PR2, PR3and PR4 at 5g/l were used. The plates were inoculated with 
the selected fungus and incubated at 30°C. The diameter of clear zone 
(halo) surrounding the fungal growth as well as diameter of the colony 
were measured after 10 days of incubation.

Phosphate solubilization in liquid media

Precultures of the fungus were prepared by inoculating plugs 
(diameter 0.5 cm) from the growing zone of fungus on agar plate to 50 
ml of nutrient broth (NB). Then, cells were cultivated statically at 30°C 
for 3 days. Afterward, the precultures were homogenized aseptically 
using a homogenizer. Aliquots of 1.5 ml of homogenized precultures 
were used to inoculate volumes of 150 ml of NBRIP containing 5 g/l 
of tested insoluble phosphates (DCP, TCP, PR1, PR2, PR3 or PR4) in 
250-ml Erlenmeyer flasks. The cultures were incubated aerobically at 
30°C on a rotary shaker at 150 rpm for 7 days. At several time intervals 
4 ml aliquots of fungal cultures were sampled and centrifuged at 15,000 
rpm for 15 min. 

The clear supernatant was used for determination of the pH and 
the soluble phosphorus released into the solution. Phosphorus was 
determined colorimetrically by using the vanado-molybdate method 
[26]. The pellets were washed with 0.5 N HCl solutions to dissolve 
the residual insoluble phosphate and then dried at 105°C for 24 h to 
determine the biomass dry weight. All experiments were performed in 
duplicates. 

Fungal biomass preparation

Aliquots of 1.5 ml of homogenized preculture of isolated fungus, 
prepared as described above, were used to inoculate 250-ml Erlenmeyer 
flasks containing 150 ml of NB. The cultures were incubated aerobically 
at 30°C on a rotary shaker at 150 rpm for 5 days. After cultivation the 
fungal biomass was harvested by filtration and then rinsed with sterile 
sodium chloride water (0.9%). 

Fungal biomass immobilization

Entrapment in calcium gel: 100 ml of sterile sodium alginate 
solution (2% w/v) was mixed, until homogenous, with 2 g of fungal 
biomass. The mixture was extruded into 150 mM CaCl2, forming 
beads of 5 mm diameter. The beads were allowed to harden in the 
CaCl2 solution at room temperature for 30 min, and rinsed with sterile 
sodium chloride water (0.9%).

Entrapment in polyacrylamide gel: 2 g of fungal biomass were 
mixed with 78 ml of Tris-HCl buffer (50 mM, pH 7), 20 ml acrylamid-
bisacrylamide solution (30-0.8 % wt/vol), and 1 ml ammonium 
persulfate solution (10 % wt/vol.). The polymerization was initiated 
adding 100µl of N,N,N’,N’- tetramethyl-ethylenediamine. The 

polyacrylamide gel was then divided into particles of 0.5 cm diameter 
and rinsed with sterile sodium chloride water (0.9%).

Solubilization of DCP in fluidized bed bioreactor using free 
and immobilized fungal biomass

The fluidized bed bioreactors are composed of 500 ml conical 
flasks containing the immobilized fungal biomass suspended in 200 
ml of NBRIP liquid medium and supplemented by 5g/l of DCP. The 
bioreactors were placed in a rotary shaker at 25°C, and the fluidization 
was assured by stirring at a rate of 120 rpm. The phosphate solubilization 
rate was followed according to time in the bioreactor. The same 
bioreactor have been used for studying DCP solubilization with free 
cells; thus, 2 g of fungal biomass were suspended in 200 ml of NBRIP 
liquid medium and supplemented by 5g/l of DCP. Solubilization rate 
was followed according to time in the bioreactor placed in the same 
conditions previously cited. For each experiment, a control test without 
fungal biomass was conducted under the same conditions.

At several time intervals, 1-ml aliquots were collected from the 
bioreactors and centrifuged at 15,000 rpm for 15 min. The supernatants 
were analyzed spectrophotometrically to determine the amount of 
soluble phosphorus and to determine the pH of the reactional media. 

Repeated batch operation of phosphate solubilization in 
fluidized bed bioreactor using free and immobilized fungal 
biomass

The longevity of solubilization activity of the immobilized fungal 
biomass was investigated in repeated batch solubilization tests. A 
fresh reactional medium (NBRIP containing 5 g/l of DCP) was first 
inoculated with immobilized fungal biomass in the fluidized bed 
bioreactor, described above, and placed at 30°C in a rotary shaker at 
120 rpm. After one week, the reactional medium was discharged and 
the immobilized fungal biomass were collected, rinsed with sterile 
NBRIP, and transferred into a fresh reactional medium for the next 
cycle of solubilization experiment. Solubilization rates were monitored 
according to time in all bioreactors. For comparison, the repeated 
batch experiments were also conducted using free fungal biomass 
under identical experimental procedures.

 

Figure 1: Phosphate solubilizer isolated fungal strain forming clear zone.
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Results and Discussion
Five bacterial isolates and 2 fungal strains, which are solubilized 

TCP (forming clear halo surrounding colonies), were isolated from 
rhizospheric soil samples. Among these strains, one fungal isolate 
identified as Aspergillus niger with higher DCP solubilization ability 

(larger solubilization halo surrounding the colony) in NBRIP plate was 
selected for further study (Figure 1).

The selected isolate was cultivated, in first time, in NBRIP solid 
medium containing DCP, TCP or rock phosphates PR1, PR2, PR3 and 
PR4 as sole insoluble phosphate sources. The obtained results shown 
as the ratio of halo/colony diameters were represented in (Figure 2).

The obtained results show that the fungal strain Aspergillus niger 
manage to solubilize all tested phosphate substrates as indicated by the 
presence of solubilization halo on their culture media. The importance 
of the solubilization depends of the used phosphate. The highest 
solubilization halo/colony ratio around 1.73 was observed on plate 
containing DCP. It is followed by TCP, PR2, PR1, PR4 and PR3 with 
halo/colony ratios of 1.5, 1.28, 1.16 and 1.14 respectively. 

It is generally accepted that phosphate solubilizing microorganisms 
convert insoluble phosphates into soluble forms through the process of 
acidification, by producing of organic acids, chelation and exchange 
reaction [15, 27-29]. However, the absence of the halo of solubilization 
or its reduced diameter can be explained by the diffusion limitation of 
secreted organic acids [30]. Consequently the phosphate solubilization 
abilities of isolated fungal strain were screened in NBRIP liquid 
medium containing the same phosphate substrates at 5g/l. The pH of 
the culture, the fungal biomass evolution and the concentration of the 
released orthophosphates were monitored according to time for each 
tested phosphate.

The obtained results, represented in (Figure 3A and 3B), concerning 
the solubilization of DCP during the cultivation of the isolated fungal 
strain indicated that this fungus has a high ability to solubilize DCP. 
The solubilization of DCP was accompanied by significant drop in 
the pH (to pH= 3.3). During the cultivation of Aspergillus niger, the 
solubilization rate of DCP was initially low. However more than 79% 
of insoluble phosphate was released as orthophosphates between the 
3rd and the 6th day at which time the fungal biomass began to grow 
intensively. Conversely, the non-inoculated control presented no 
solubilization (data not shown).

The solubilization TCP and 4 different kinds of rock phosphates by 
isolated Aspergillus niger was investigated. The obtained results, plotted 
in (Table 1), testify of high ability of isolated fungus to solubilize 
mineral phosphates. Indeed, the use of Aspergillus niger enables a 
solubilization of all tested phosphates but with different performances 
that vary according to the used phosphate. Aspergillus niger solubilizes 
better and more quickly the DCP compared to others tested phosphates 
with solubilization efficiency and specific solubilization rate of 79.1% 
and 302.8 mg/g/d respectively. It is followed by TCP with solubilization 
efficiency and specific solubilization rate of 71.1% and 254.8 mg/g/d 
respectively. The lowest solubilization was recorded using PR3 with 
solubilization efficiency and specific solubilization rate of 30.8 and 
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Figure 2: Solubilization tests on NBRIP plates containing tested phosphate 
matrixes using isolated fungal strain.
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Figure 3: Evolution of pH, released orthophosphates concentration and fungal 
dry biomass in the culture media of isolated fungus cultivated in presence of 
DCP.

A: Evolution of released orthophosphates concentration and fungal dry bio-
mass, 
B: Evolution of pH

Final pH value Solubilization 
efficiency (%)

Specific 
solubilization rate 
(mg/g/d)

DCP 3.3 79.1 302.8
TCP 3.5 71.1 254.8
PR1 3.3 34.4 73.5
PR2 3.2 36.1 92.5
PR3 3.3 30.8 58.0
PR4 3.2 31.7 55.1

Table 1: Final pH value in reactional medium, Solubilization efficiency and spe-
cific solubilization rate of tested phosphate matrixes recorded by isolated fungus 
in growth condition.
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148mg/g/d respectively. The solubilization of all tested phosphate 
matrixes was accompanied by significant drop in the pH (inferior to 
3.5). 

The solubilization of DCP in fluidized bed bioreactor using free 
and entrapped fungal biomass in alginate and polyacrylamide gels 
was investigated. The concentration of released orthophosphates in 
reactional medium was measured at predefined interval time. Thus, 
free and immobilized fungal biomass exhibited similar solubilization 
patterns for DCP. The concentration of soluble phosphorus increased 
progressively in the reactional medium. The recorded solubilization 
efficiency for free fungal biomass reached 84.7%. Using immobilized 
fungal biomass, the obtained solubilization efficiencies were 73.4% 
and 66.1 respectively with alginate and polyacrylamide as entrapment 
matrixes (Table 2). The lower solubilization rates for immobilized 
biomass compared to free biomass can be attributed to mass transfer 
restriction arising from fungal biomass entrapment.

To investigate the possibility of the reusability of the same 
fungal biomass in successive cycles of solubilization, repeated 
batch experiments were performed. As shown in (Table 3), free 
biomass of Aspergillus niger remind active during all the 4 cycles of 
solubilization. However, a progressive decrease in solubilization 
efficiency was observed over the cycles of solubilization. After 4 Cycles 
of solubilization, the recorded solubilization efficiency and specific 
solubilization rate dropped from 84.7 to 70.2% and from 399 to 
260.5mg/g/d respectively. The immobilization of Aspergillus niger in 
calcium alginate gel greatly stabilizes the fungal activity for more than 
4 cycles. This stability returns to soft polymerization condition of the 
gel and to a direct role of the calcium in the cells conservation [31]. The 
use of Aspergillus niger entrapped in polyacrylamide gel in repeated 
batch fluidized bioreactor has proven to be not interesting. Indeed the 
phosphate solubilization system lost more than 54 % of its solubilization 
efficiency at the 4th cycle of treatment, and practically cancelled at the 
end of the 6th cycle (data not shown). This limitation of the biological 
activity is due to the existence of a favorable microenvironment inside 
the gel matrix and the presence of residual monomer that leads to a 
toxicity of microbial cell [32].

The obtained results indicate that isolated fungal strain is able to 
mobilize phosphorus from inorganic source and may serve as a good 
rock phosphate solubilizer when inoculated into soils where rock 
phosphate is used as phosphatic fertilizers. Encapsulated microbial 
systems could be adopted for different application: solubilization of 

inorganic phosphate in bioreactors; preparation of microbial inoculants 
for introduction in soils enriched with untreated rock phosphate and 
pre-treatment of ores.
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