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Introduction
Aquatic ecosystems are mainly affected by heavy metals and 

represent a potential risk to the health of humans and ecosystems [1]. 
Heavy metal ions in the environment are biomagnified in the food chain 
and are accumulated in tissues. Although low concentrations of some 
heavy metals are metabolically important to many living organisms, at 
higher levels they can potentially be toxic [2].

Arsenic (As) is a component of many industrial raw materials, 
products and wastes. Elevated levels of arsenic in drinking water have 
been implicated in human diseases and mortality [3]. Chronic exposure 
to arsenic causes neurological and haematological toxicity [4]. Arsenic 
impacts the major organs and is a potential carcinogen [5-7]. The 
most common arsenic species observed in the environment are the 
trivalent form arsenite As (III) and pentavalent form arsenate As (V) 
in which As (III) is more toxic than As (V) [8]. Because arsenic readily 
changes valence state and reacts to form species with varying toxicity 
and mobility, effective treatment of arsenic can be challenging. Arsenic 
treatment technologies require peroxidation step to form As (V) from 
As (III) [9] but the cost and secondary product formation during other 
conventional methods reduce the practices [10]. Use of biological 
processes provides a means for cost-effective removal of metals for the 
treatment of metal contaminated waters.

Microbes are ideal candidates to decrease the heavy metal ion 
concentration from ppm to ppb levels [11]. Microalgae are known 
to sequestrate heavy metals due to their cell wall constituents which 
act as binding sites for metals [12-17]. Bioaccumulation of metals by 
algae may create a feasible method for remediating water contaminated 
with metals [18,19]. It is well established that several marine and fresh 
water algae are able to take up various heavy metals selectively from 
aqueous media and to accumulate these metals within their cells [20-
22]. Microalgae have been shown to accumulate arsenic and could 
potentially remediate through adsorption and biotransformation of 
inorganic arsenic [23-25].

In this study, the emphasis has been laid to know the efficiency 
of fresh water algal species in removing the arsenic from aqueous 
solutions. The research was to simultaneously determine the differences 
in arsenate and arsenite sorption capacities of living and dried algal 
biomass. 

Materials and Methods
Sample collection and identification

Algal samples were collected from Bangalore fresh water habitats 
(13°04’N, 77°58’E) and washed several times with tap water and then 
with deionized water before analysed by using microscope. The family 
and genus identified with reference to the biology of algae [26]. The 
identified algae were Chlorophyceae (Botryococcus, Chlamydomonas, 
Chlorella, Gonium, Pandorina, Scenedesmus, Spirogyra, Volvox), 
Cyanophyceae (Oscillatoria, Spirulina) and Euglenophyceae (Phacus).

Chemicals

All chemicals used in this study were of analytical reagent grade. 
Stock solutions of 100 mg/L concentration each of As (III) and As (V) 
were prepared by dissolving NaAsO2 and Na2HAsO4.7H2O in deionized 
water respectively. Solutions for adsorption and metal analyses were 
prepared by appropriate dilution of the freshly prepared stock solution.

Cultivation

The identified algae were cultivated in appropriate media BG 11 
media (Oscillatoria), Bold 1NV media (Spirogyra), modified Bold 3N 
media (Pandorina, Volvox, Phacus), Proteose medium (Scenedesmus, 
Gonium, Chlorella), Soil extract medium (Chlamydomonas) and soil 
water media (Spirulina) [27,28].

Growth inhibition studies

Growth inhibition bioassays for the influence of As (III) and As (V) 
at a concentration of 10 mg/L on algal isolates (10 mg/l) were studied. 
The final cell density and biomass after arsenic exposure for a period of 
15 days were compared to controls in dilution water (media). Samples 
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Abstract
Biosorption of arsenic (III) and (V) from aqueous solutions by living and dried biomass of fresh water microalgae 

was investigated. A total of five microalgae namely Chlorella, Oscillatioria, Scenedesmus, Spirogyra and Pandorina 
were identified as arsenic tolerant and used for further studies. Varying conditions of pH, temperature, biomass and 
contact time were studied for As (III) and As (V) adsorption properties of living and dried biomass of microalgae. 
Significant biosorption of arsenic was found at pH 4, 32°C and 0.8 g/l levels. Both living and dried biomass were 
further studied for As (III) and (V) removal from the aqueous solutions containing 30 mg/l under the same experimental 
conditions. Removal rate of As (III) was higher than the As (V) by the microalgae under the experimental conditions 
and dried biomass showed higher biosorption rate and faster kinetic than the living ones.
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from each flask was taken and fixed with Lugol’s iodine solution to 
measure the cell density using haemocytometer. The mean number 
of cells produced at each concentration after exposing period was 
expressed as percentage growth reduction with respect to control. The 
algal biomass was determined by the spectrophotometric transmission 
of algal suspension (Schimadzu UV-2600) at 550 nm. From the results, 
arsenic tolerant microalgae were chosen and used for biosorption 
studies.

Arsenic biosorption studies
Living biomass: Cells in the exponential growth phase were 

obtained by centrifuging at 2500 rpm for 7 minutes and inoculated into 
flasks with fresh media at a concentration of 1 x 104 cells/ml. The flasks 
were shaken by hand and randomly placed in a growth cabinet (27 ± 
1ºC, 12:12 h light/dark cycle, Philips TL 40W cool white fluorescent 
lighting, 140 µmol photons/m2/s). The quantity of biomass used for the 
biosorption studies varied from 1- 2x105 cells/ml. 

Non-living biomass: The algal biomass was sun-dried and then 
dried in oven at 50°C for 24 h. The dried algal biomass was shredded, 
ground in a mortar and an average size of 500-600 µm was used for 
biosorption experiments at a concentration of 0.5 g/l.

Arsenic concentration: Both living and non-living algal biomass 
were inoculated separately into 250 ml conical flasks containing 
100 ml of media supplemented with As (III) and As (V) with initial 
concentrations ranging from 10 to 50 mg/l. The flasks were kept under 
illumination at 2500 lux for 12 hr light - dark cycle at 24 ± 2°C. Metal-
free and algae-free blanks were used as control groups. Test flasks 
were rotated and shaken twice daily to ensure sufficient gas exchange. 
Separation of biomass from metal bearing solution after appropriate 
incubation time was achieved through centrifugation at 10,000 rpm for 
10 minutes.

pH study: Measurements for the effects of varied pH on Ar (III) 
and (V) biosorption performance were chosen by adding 0.1M NaOH 
or 0.1M HCl to achieve pH values of 2.0 through 10.0.

Temperature study: Measurements for the effects of increased 
temperature on arsenic adsorption performance by the algal isolates 
were studied at temperature between 23.0 to 35.0 ± 2°C.

Biomass study: Various biomass concentrations of living and non-
living algal cells in the range of 0.2, 0.4, 0.6, 0.8 and 1 g/l were used to 
study the adsorption of arsenic.

Apparatus
All measurements were carried out on Agilent 280FS AA 

spectrometer (Agilent Technologies, USA). The organic phase was 
aspirated directly without elution into the flame and the signals related 
to As (III) and As (V) was recorded at 193.7 and 197.2 nm (lamp current 
10mA). The data were analyzed by using Spectra AA software.

Biosorption kinetics studies 
The metal biosorption (q) by the algae and bioremoval efficiency 

(R) were calculated by the following formulae [29,30].
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Where q = metal adsorption (mg/g); M = dry mass of a  lgae (g); V 
= volume of i  nitial metal ion solution (L); R = bioremoval efficiency 

(%); Ci= initial concentration of metal in aqueous solution (mg/l); Cf= 
final concentration of metal in aqueous solution (mg/l).

Biosorption equilibrium models: The biosorption equilibrium 
isotherm was obtained by the Freundlich model (Equation 1) and the 
Langmuir model (Equation 2) respectively [31].

1/n
f eq =K C                                                                                           (1)

Where, Kf and n are the distribution coefficient and a correction 
factor, respectively and Ce is equilibrium concentration of heavy metal 
(mg/l). By plotting the linear form of Eq. (1), lnq = 1/n lnCe + lnKf, the 
slope is the value of 1/n and the intercept is equal to lnKf.
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The linear form of Langmuir is

eq eq max eq maxC /q = 1 /q b + C /q                                                         (3)

Where qmax is the Langmuir constant (mg/g) reflecting the 
maximum adsorption capacity of the metal ion per unit weight of 
biomass to form a complete monolayer on the surface bound at high 
Ceq. Langmuir constant b(l/mg) represents a ratio of adsorption rate 
constant to desorption rate constant, which also gives an indication of 
the affinity of the metal for binding sites on the biosorbent. qmax and b 
can be determined from the linear form of Langmuir equation (3) by 
plotting Ceq/qeqvs. Ceq.

The specific metal biosorption q was calculated using the following 
equation

( ) i e
e

C -C
q mg/g = XV

M
 
                                                                            (4)

Where qe is the specific metal biosorption (mg metal/g biomass), 
V is the volume of metal solution (l), Ci and Ce are the initial and 
equilibrium concentration of metal (mg /l), respectively, and m is the 
dry weight of the biomass (g).

Arsenic biosorption potential
Based on the arsenic biosorption equilibriums (mg/g), optimum 

conditions for pH, temperature and biomass were determined and 
further studied to determine arsenic biosorption potential of microalgae 
based on contact time. The living and non-living algal biomass (0.8 g/l) 
was suspended in 100 ml of Ar (III) and (V) solution (30 mg/l) in 250 ml 
flasks containing a pH of 4.0. The cell/metal suspensions were shaken 
(150 rpm) at 32°C. Samples were taken from the solutions at different 
time intervals from 0-60 hours and analysed for metal biosorption.

Results and Discussion
Growth pattern of isolated microalgae in the presence of arsenic 

has revealed that the degree of growth inhibition by arsenic varied 
widely between the isolates. The growth rate of Spirogyra, Volvox, 
Phacus, Gonium and Chlamydomonas was inhibited by As (III and V) 
in 5 days at 10 mg/l concentration. Oscillatoria and Spirogyra reached 
stationary phase in 8-10 days followed by decline phase. The growth 
rate of Pandorina was high up to 11 days where as Chlorella and 
Scenedesmus had exponential phase up to 13 days. These five genera 
have been considered as arsenic tolerant microalgae for further studies. 
The arsenic tolerant microalgae were grown in the presence As (III) 
and As (V) with a initial concentrations of 10-50 mg/l during which 
increased concentration of arsenic in the growth medium has led to 
deceased adsorption rate. The environmental setups had varying pH, 
temperature and biomass which produced variable results irrespective 
of the species studied.
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AS(III) pH
Living Dried

Chlorella Oscillatoria Scenedesmus Spirogyra Pandorina Chlorella Oscillatoria Scenedesmus Spirogyra Pandorina

10 mg/l

2.0 4 3 5 4 4 4 4 5 5 4
4.0 7 6 7 6 7 7 6 7 6 6
6.0 7 6 7 6 7 7 5 7 6 6
8.0 5 4 5 4 5 5 4 5 5 5

10.0 4 3 4 3 4 4 3 4 3 5

20 mg/l

2.0 8 6 9 8 7 9 8 9 9 9
4.0 11 9 13 12 12 12 11 14 13 15
6.0 10 9 12 12 14 11 10 14 13 14
8.0 8 5 8 6 6 7 4 8 7 7

10.0 5 3 5 3 3 4 2 5 3 3

30 mg/l

2.0 10 9 11 8 8 9 9 10 9 8
4.0 20 18 23 20 21 21 18 22 20 21
6.0 19 17 22 20 20 21 18 21 18 19
8.0 9 7 8 9 8 9 8 8 9 9

10.0 5 3 5 4 4 5 4 5 4 4

40 mg/l

2.0 10 9 12 11 12 12 9 13 11 11
4.0 17 16 20 18 19 17 15 19 18 17
6.0 13 11 14 12 12 14 8 13 13 12
8.0 11 7 9 8 9 9 7 8 9 8

10.0 9 6 8 7 7 9 6 7 6 6

50 mg/l

2.0 12 7 11 9 9 12 8 10 9 9
4.0 14 10 15 13 12 14 11 14 12 12
6.0 11 8 12 10 9 10 7 11 9 9
8.0 10 7 9 9 8 9 7 9 8 8

10.0 8 6 7 8 7 8 6 8 8 8

Table 1: Biosorption of AS (III) (mg/g) under varying pH.

AS(V) pH
Living Dried

Chlorella Oscillatoria Scenedesmus Spirogyra Pandorina Chlorella Oscillatoria Scenedesmus Spirogyra Pandorina

10 mg/l

2.0 5 4 5 4 4 5 3 5 4 5
4.0 6 4 6 6 6 7 5 7 6 7
6.0 6 4 5 6 5 6 4 6 5 6
8.0 4 3 4 4 4 3 2 4 4 4
10.0 3 1 2 2 2 3 2 3 3 3

20 mg/l

2.0 9 7 9 8 8 10 8 11 9 10
4.0 12 10 13 11 11 13 12 14 12 13
6.0 11 9 12 10 10 11 12 12 10 10
8.0 9 7 9 8 8 9 8 9 8 8
10.0 6 4 6 5 6 7 4 6 6 5

30 mg/l

2.0 13 11 14 12 12 14 12 17 15 16
4.0 19 16 20 17 18 20 18 21 19 20
6.0 17 14 17 13 15 17 12 16 15 14
8.0 11 9 10 9 9 11 9 11 10 9
10.0 7 5 7 6 6 7 5 6 6 6

40 mg/l

2.0 11 9 12 11 12 12 9 13 11 11
4.0 14 12 16 14 15 15 13 18 15 15
6.0 12 10 13 11 12 12 9 15 13 12
8.0 9 7 9 7 7 10 8 10 9 9
10.0 8 6 7 7 6 7 7 8 7 7

50 mg/l

2.0 15 11 15 13 14 16 10 16 14 14
4.0 19 15 21 18 18 20 14 21 17 17
6.0 16 13 17 15 16 15 12 17 13 14
8.0 15 11 13 12 11 13 10 13 10 10
10.0 9 8 10 9 10 10 9 11 9 9

Table 2: Biosorption of AS (V) (mg/g) under varying pH.
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The pH of the solution has played a key role in the biosorption of 
arsenite and arsenate by the microalgae. Aqueous solutions containing 
As (III) and As (V) were prepared with varying pH ranging from 2.0 to 
10.0. Arsenic sorption decreased with increasing pH and the maximum 
arsenic removal occurred at pH 4.0 for both living and dried biomass. 
The highest As (III) uptake (Q) of 23 mg/g was recorded with living 
biomass of Scenedesmus at a initial concentration of 30 mg/l followed by 
Pandorina (21 mg/g). Maximum uptake of 22 mg/g As (III) was found 
with the dried biomass of Scenedesmus which was followed by Chlorella 
and Pandorina (Table 1). The metal sorption of As (V) was highest in 
living biomass of Scenedesmus (20 mg/g) and the trend was reflected in 
dried biomass of Chlorella and Pandorina at 30 mg/g (Table 2)

Various temperatures in the range of 23°C - 35°C were used 
to study the metal uptake by the algal isolates. The results indicated 
that 32°C was found optimum in which maximum adsorption has 
taken place and there were no significant changes in the metal uptake 
at temperature below 29°C and above 32°C. The living biomass of 
Scenedesmus and Chlorella has adsorbed maximum As (III) from the 
aqueous solution followed by Spirogyra and Pandorina at 30 mg/l 
initial concentrations. An uptake of 25 mg/g was recorded with dried 
biomass of Scenedesmus followed by Chlorella and Pandorina (24 mg/g) 
under similar conditions (Table 3). The uptake levels of As (V) were 
comparatively lower than As (III) with a maximum sorption of 16 mg/g 
by living biomass of Scenedesmus and Oscillatoria. The dried biomass of 
Scenedesmus and Chlorella has up taken 19 and 17 mg/g of As (V) at 30 
mg/l levels (Table 4). 

The biomass dosage was varied from to 0.2 to 1.0 g/l. Increased 
biomass has increased the arsenic sorption and the maximum uptake 
of arsenic was obtained at a biomass concentration of 0.8 g/l. At 30 mg/l 
initial concentration of As (III), maximum uptake was seen with living 

biomass of Pandorina (27 mg/g) followed by Scenedesmus (26 mg/g) 
whereas the dried biomass of Scenedesmus (28 mg/g) has recorded 
the highest AS (III) uptake over Pandorina (26 mg/g) (Table 5). The 
trend from temperature variations was repeated in biomass dosage 
in As (V) sorption with living cells of Oscillatoria and Pandorina has 
exhibited maximum uptake of 18 mg/g which relatively lower than As 
(III) uptake under similar conditions. The dried biomass of Pandorina 
has maximum As (V) sorption (17 mg/g) followed by Oscillatoria (16 
mg/g) (Table 6). 

 The optimum pH, temperature and contact time obtained from 
equilibrium isotherm experiments were used to determine the arsenic 
biosorption of both living and non-living algal biomass based on time 
dependent manner. The time dependent biosorption of arsenic by living 
and dried biomass, samples equivalent to 0.8g/l were placed in solutions 
of As (III) and As (V) adjusted to pH 4.0 and 32°C temperature. The 
results of arsenic sorption as a function of time under the controlled 
conditions have been depicted in Figure 1-4. The kinetic studies 
revealed that arsenic biosorption increases with time and recorded 
highest at 36 hrs contact time. However the soption rate decreased 
progressively and became almost constant during the 60 hrs contact 
with arsenic. Scenedesmus has showed fast kinetic of As (III) binding 
and was adsorbed appreciable quantities of As (III) (20 mg/g) during 
the first 24 -36 hrs from the solution. The second highest uptake of 
As (III) was observed with Pandorina (21 mg/g) followed by Chlorella 
and there was no significant changes in the metal uptake after 36 hrs of 
contact time by the isolates. Similarly highest As (V) was recorded with 
Scenedesmus with a metal uptake of 20 mg/g followed by Chlorella and 
Pandorina after 36 hrs of contact time. Oscillatoria and Spirulina have 
recorded moderate arsenic uptake throughout the study. 

Algae are known for their capability to accumulate heavy metals 

AS(III) Temp
Living Dried

Chlorella Oscillatoria Scenedesmus Spirogyra Pandorina Chlorella Oscillatoria Scenedesmus Spirogyra Pandorina

10 mg/l

23°C 4 2 3 2 3 3 3 4 2 3
26°C 4 3 5 4 4 4 4 4 3 3
29°C 7 5 7 5 6 6 5 7 5 5
32°C 7 6 6 6 7 6 6 6 5 6
35°C 6 5 6 5 5 5 4 7 4 5

20 mg/l

23°C 7 5 7 6 7 8 7 10 7 8
26°C 9 8 10 9 10 11 9 12 9 10
29°C 11 11 14 12 13 15 12 16 13 14
32°C 12 12 15 13 14 15 12 17 14 14
35°C 9 9 12 10 11 13 11 14 11 11

30 mg/l

23°C 10 9 11 10 11 14 10 12 11 12
26°C 12 11 15 13 13 17 13 18 14 15
29°C 20 17 21 18 20 24 21 25 22 23
32°C 21 17 21 20 20 24 23 25 23 24
35°C 16 13 18 16 17 21 18 22 19 19

40 mg/l

23°C 11 9 12 10 10 11 10 12 11 11
26°C 14 19 13 11 13 13 11 15 12 12
29°C 16 12 15 14 14 17 13 18 12 14
32°C 18 13 17 15 15 19 14 18 14 15
35°C 16 12 17 14 15 18 12 17 12 14

50 mg/l

23°C 13 9 11 11 10 14 10 12 12 12
26°C 15 10 14 13 12 14 10 16 17 16
29°C 17 14 28 16 17 21 19 22 20 20
32°C 20 17 21 18 20 24 21 25 22 23
35°C 16 25 20 17 18 21 19 23 20 20

Table 3: Biosorption of AS (III) (mg/g) under varying temperature.
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AS(V) Temp
Living Dried

Chlorella Oscillatoria Scenedesmus Spirogyra Pandorina Chlorella Oscillatoria Scenedesmus Spirogyra Pandorina

10 mg/l

23°C 6 5 6 5 6 5 4 6 5 5

26°C 6 6 7 7 6 6 5 5 7 6

29°C 7 7 7 6 6 6 5 6 6 7

32°C 8 6 8 6 6 7 5 7 6 5

35°C 7 7 8 6 5 7 5 6 6 5

20 mg/l

23°C 8 6 8 7 7 8 7 8 8 7

26°C 8 7 9 7 7 9 7 9 8 8

29°C 10 11 12 9 10 10 9 9 10 10

32°C 11 13 13 11 12 11 11 11 11 11

35°C 11 11 12 10 10 11 10 10 10 10

30 mg/l

23°C 12 11 11 11 12 12 10 12 11 11

26°C 13 11 13 13 14 14 12 16 13 13

29°C 14 12 15 14 13 14 10 17 14 12

32°C 15 16 16 14 15 17 15 19 16 16

35°C 14 12 17 16 15 14 13 18 15 16

40 mg/l

23°C 8 6 8 6 7 8 6 8 7 7

26°C 10 8 11 8 9 9 8 11 9 9

29°C 13 11 13 10 11 12 10 14 10 12

32°C 16 11 15 13 14 17 11 17 12 14

35°C 14 10 13 11 11 14 9 14 10 11

50 mg/l

23°C 9 6 9 8 8 8 6 8 7 9

26°C 12 9 13 10 11 11 8 11 10 12

29°C 16 13 17 14 16 17 11 17 15 17

32°C 18 13 19 15 17 19 14 20 17 20

35°C 15 11 16 13 14 16 13 15 13 15

Table 4: Biosorption of AS (V) (mg/g) under varying temperatures.

AS(III) Biomass
g/l

Living Dried
Chlorella Oscillatoria Scenedesmus Spirogyra Pandorina Chlorella Oscillatoria Scenedesmus Spirogyra Pandorina

10 mg/l

0.2 g 4 3 5 4 4 5 3 4 5 4
0.4 g 9 7 10 9 9 11 8 11 10 11
0.6 g 15 12 16 15 15 16 13 14 13 15
0.8 g 22 18 23 21 21 22 19 21 17 19
1.0 g 19 16 21 18 17 17 16 19 19 20

20 mg/l

0.2 g 5 4 6 6 5 6 4 6 5 6
0.4 g 12 9 12 11 11 13 10 15 13 15
0.6 g 17 15 18 17 18 18 15 17 16 17
0.8 g 26 23 29 26 27 28 25 27 23 25
1.0 g 20 19 24 21 21 22 20 23 22 23

30 mg/l

0.2 g 5 5 5 5 5 5 5 4 5 4
0.4 g 15 11 16 12 13 13 9 14 11 12
0.6 g 18 15 18 16 17 18 14 19 15 15
0.8 g 23 24 26 23 27 25 24 28 25 26
1.0 g 20 20 21 19 22 22 20 23 20 21

40 mg/l

0.2 g 6 5 7 7 6 6 4 6 6 6
0.4 g 16 11 17 16 18 16 13 17 15 15
0.6 g 20 19 21 21 22 22 20 23 21 21
0.8 g 28 26 32 29 30 30 28 31 26 29
1.0 g 23 22 27 24 26 27 25 29 25 27

50 mg/l

0.2 g 7 6 7 7 7 7 5 6 6 7
0.4 g 16 13 18 17 17 17 13 17 16 16
0.6 g 21 20 23 21 23 23 17 23 21 22
0.8 g 28 27 33 29 30 31 28 31 27 30
1.0 g 24 23 29 25 26 28 25 29 26 28

Table 5: Biosorption of AS (III) (mg/g) under varying biomass concentrations.



Citation: Sibi G (2014) Biosorption of Arsenic by Living and Dried Biomass of Fresh Water Microalgae - Potentials and Equilibrium Studies. J 
Bioremed Biodeg 5: 249. doi:10.4172/2155-6199.1000249

Volume 5 • Issue 6 • 1000249
J Bioremed Biodeg
ISSN: 2155-6199 JBRBD, an open access journal

Page 6 of 8

as they are required as essential nutrients [32] and have been explored 
for metal removal [33]. The level of metal removal by a microalga 
depends on biomass concentrations, pH and contact time [34-36]. In 
this experiment, arsenic sorption values of dried biomass were high in 
comparison with living biomass. This could be due to the larger surface 
area due to the destruction of cell membranes during the dried biomass 
preparation. Non-living microbial cells have lower sensitivity to toxic 
metal ions concentrations over living cells which offer to use them at 
adverse operating conditions [37]. The metal sorption capacity was 
drastically reduced at pH values above 6.0, which could be due to the 
formation of insoluble metal hydroxides. Further, it was noted that the 
arsenic uptake was lowered at pH below 4.0. The temperature of the 
solution could influence the metal biosorption of living cells [37] and 
culture temperatures have profound effects on the chemical composition 
of the algal cells. The biosorption of As increased with temperatures 
from 23°C-32°C and the results indicated that elevated temperatures 
tend to increase the biosorptive properties of isolated microalgae with 
an optimum temperature of 32°C. However the variations in uptake of 
As (III) and As (V) based on temperature need to be investigated. It 
was observed that higher biomass levels have reduced the adsorption 
amount which was influenced by the formation of aggregates at higher 
concentrations that has ultimately resulted in reduced biosorption area 
[38].

The accumulation of heavy metals in algae involves and rapid 
uptake initially followed by slower uptake [37,39-41]. The same trend 
was observed in the experiments as the metal sorption rate was higher 
in first 36 hours followed by significantly slower uptake in the next 
hours. Further, As (III) and As (V) sorption was more at initial time (0-
36 hrs) followed by almost constant after 36 hrs of contact time.

Based on the pH studies, As (III) was effectively removed by both 

AS(V) Biomass
g/l

Living Dried
Chlorella Oscillatoria Scenedesmus Spirogyra Pandorina Chlorella Oscillatoria Scenedesmus Spirogyra Pandorina

10 mg/l

0.2 g 2 2 2 1 2 2 1 3 1 3
0.4 g 4 2 4 3 4 4 2 3 3 4
0.6 g 5 3 6 3 5 5 3 6 4 5
0.8 g 5 4 7 5 7 6 4 7 5 6
1.0 g 6 5 6 4 7 6 4 6 5 6

20 mg/l

0.2 g 3 2 3 2 3 3 2 3 2 2
0.4 g 5 3 5 3 4 4 3 5 3 5
0.6 g 6 6 7 6 6 6 6 7 6 6
0.8 g 9 9 10 8 10 10 9 11 9 11
1.0 g 9 9 10 9 11 9 9 10 9 11

30 mg/l

0.2 g 7 5 8 6 7 8 6 8 5 7
0.4 g 10 8 12 8 11 10 9 11 8 11
0.6 g 12 10 15 11 15 11 11 13 11 14
0.8 g 14 18 16 16 18 13 16 15 15 17
1.0 g 13 17 14 15 18 13 16 13 13 16

40 mg/l

0.2 g 11 11 12 11 11 12 11 12 11 10
0.4 g 16 15 18 16 16 14 15 19 14 15
0.6 g 21 16 24 21 25 21 16 22 22 23
0.8 g 25 18 27 21 28 22 18 25 23 26
1.0 g 24 19 26 20 26 20 18 24 22 25

50 mg/l

0.2 g 15 14 17 15 15 16 13 15 14 15
0.4 g 26 23 26 22 23 25 23 24 22 22
0.6 g 34 30 34 31 33 31 31 34 30 30
0.8 g 36 32 36 34 36 33 33 35 33 33
1.0 g 34 32 33 33 33 32 31 30 31 32

Table 6: Biosorption of AS (V) (mg/g) under varying biomass concentrations.

Figure 1: Effect of contact time on biosorption of As (III) at pH 4.0; 
temperature 32°C; As concentration 30 mg/l; living biomass 0.8 g/l.
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Figure 2: Effect of contact time on biosorption of As (III) at pH 4.0; 
temperature 32°C; As concentration 30 mg/l; dried biomass 0.8 g/l.
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living and dried biomass of Scenedesmus and Pandorina whereas As (V) 
was removed by Scenedesmus and Chlorella. Significant levels of As (III) 
was removed by the living biomass of Spirogyra at varying pH. Under 
varying temperatures, Scenedesmus, Chlorella and Pandorina were 
efficient in removing As (III) and As (V) from the solutions. In general, 
Scenedesmus, Pandorina and Chlorella were found as potential arsenic 
removers from the aqueous solutions under varying environmental 
conditions. Heavy metal removal capacities of Scenedesmus was 
reported in earlier studies [42-45]. Arsenite and arsneate tolerance 
levels of Chlorella were studied earlier [23,24,46,47]. Spirogyra was 
efficient in As (III) removal than As (V) and the previous studies 
reported the arsenic removal by Spirogyra [48]. Samal et al. [49] has 
revealed the arsenic removing capacity of Oscillatoria in their studies 
and in this study dried biomass of Oscillatoria was significant at 30 mg/l 
of As (V).

In this study, removal rate of As (III) was higher than the As (V) 
by the microalgae under the experimental conditions. The trivalent 
arsenite is more toxic than the pentavalent arsenate and this study 
reveals the potential use of microalgae in removing the toxic As (III). The 
dried biomass was found effective for arsenic sorption than the living 
biomass. This study emphasizes that microalgae are ideal candidates to 
be further exploited for the removal of other heavy metal ions.
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Figure 3: Effect of contact time on biosorption of As (V) at pH 4.0; 
temperature 32°C; As concentration 30 mg/l; living biomass 0.8 g/l.
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Figure 4: Effect of contact time on biosorption of As (V) at pH 4.0; 
temperature 32°C; As concentration 30 mg/l; dried biomass 0.8 g/l.
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