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MR imaging is a powerful tool for representing the soft tissue, 
organs and also three-dimensional visualization inside of the human 
body. This tool has different advantages including imaging in different 
directions and also it is relatively safe as compared to the other imaging 
modalities such as Computer Tomography (CT) and X-ray. MRI is 
used to capture images in different modalities such as T1-weighted, 
T2-weighted, and Proton Density (PD)-weighted. This capability help 
to better diagnose the different diseases such as cancers and Multiple 
Sclerosis (MS) [1]. MR has the capability to provide the functional 
activity of the brain too [2] and many tools have been proposed for the 
analysis of the fMRI data [3,4].

Brain tissue classification or segmentation is used for detection 
and diagnosis of normal and pathological tissues such as MS tissue 
abnormalities and tumors. These abnormalities could be identified by 
tracking of changes in volume, shape and regional distribution of brain 
tissue during follow-up of patients. Also, some of the neurological 
and psychiatric disorders such as Alzheimer’s [5], Parkinson’s and 
Huntington’s disease, depression, autism, can be diagnosed with 
detection of changes in the morphology of subcortical nuclei and the 
cerebellum [6,7].

Furthermore, brain image segmentation plays an important role in 
clinical diagnostic tools and treatment procedures such as diagnosis 
and follow-up and also 3D brain visualization for measuring the 
volume of different tissues in brain such as Gray and White Matter, 
Thalamus, Amygdala, Hippocampus etc. [8].  However, some authors 
try to change the problem to a three type tissue classification and they 
assume multiple gray matter structures as one class. Hence, they label 
brain volumes into a three main classes like WM, GM, Cerebrospinal 
fluid (CSF) [9,10]. Internet Brain Segmentation Repository (IBSR) 
provided by the Center for Morphometric Analysis (CMA) at 
Massachusetts General Hospital and also, BrainWeb, which has 
been collected at McConnell Brain Imaging Centre of the Montreal 
Neurological Institute, McGill University are two well-known dataset 
for this area of research.

Brain images basically contain a lot of artifacts including Partial 
Volume Effect (PVE), Intensity Non Uniformity (INU) and some noises 
and deviations. PVE is happen when multiple tissues are placed into a 
voxel and a mixing value is laid into each voxel, thus a wrong value is 
assigned to each pixel. INU happens because of Radio Frequency (RF) 
coil and some hardware limitation. Hence, an accurate segmentation of 
brain images is a very difficult task. On the other hand, in most cases an 
accurate and precise segmentation is crucial for a correct diagnosis by 
clinical tools. Moreover, manual segmentation of brain MRI images is 
a time-consuming and labor-intensive procedure; therefore, automatic 
image segmentation is widely used for this purpose [1,11-13]. 

We present a compact review of the different methods, which are 
proposed in recent years for MRI brain segmentation. We try to divide 
these methods into two main important categories such as supervised 
(and semi-supervised) and unsupervised methods.

Unsupervised Methods
These methods do not use the prior class labels for segmentation 

process. Two main categories in this category are the Finite Mixture 
Model (FMM) [8,14,15] and Fuzzy C-means (FCM) based methods 
[16,17]. Although, other unsupervised methods like some Neural 
Network methods such as Self-organizing maps (SOM) [18,19] and 
Adaptive Resonance Theory (ART) [20] and morphological methods 
including watershed algorithm have been used for segmentation of 
brain tissues. Actually, clustering methods are common methods for 
MRI image segmentation, but these methods just consider the intensity 
level in the segmentation process; therefore, combination of these 
methods with other methods like Markov Random Field (MRF) [21-
24] and Level Sets (LS) approaches [11,25] is used for incorporating of
contextual, textural, spatial, and spectral information.  

FMM methods like Gaussian Mixture Model present a proper 
distribution for different tissues in the brain [9,26-28]. In these 
methods each tissue is approximated by a distribution, then, the 
segmentation problem turn into the estimating of the parameters of 
these distributions. Expectation Maximization (EM) is a common 
method to estimate these parameters. Combination of EM algorithm 
with a variant of MRF algorithm also has attracted much attention for 
MRI brain image segmentation [10,29]. 

FCM algorithm is another important clustering algorithm, which 
was proposed in [30]. This method assigns a degree of the membership 
of belonging each pixel to each cluster; therefore, FCM algorithm 
has a good robustness against PVE. Different extension of the FCM 
algorithm have been proposed for increasing the robustness of FCM 
against INU and noise and improving the result of FCM algorithm for 
MRI brain image segmentation [16,31-33].

Supervised and semi-supervised methods
These methods use the prior class labels for segmentation process. 

Two main categories in this category are machine learning based 
methods and atlas based methods. Machine learning based methods 
use a database which are divided into two different parts such as 
training and test set. The learning phase is performed on the training 
set and the evaluation is done on the test set. Support Vector Machine 
(SVM) [34-37] and Neural Network (NN) methods like Multi-Layer 
Perceptron (MLP) [38,39] are the two most important machine 
learning approaches which are mostly used in this area. 

By gathering the data from different subjects, an atlas of a brain is 
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constructed; therefore, an atlas is containing of the prior information 
about different tissues in the brain.  The atlas-based methods use 
these pre-labeled images and prior anatomical information for the 
segmentation process. These methods mostly are consisted of three main 
steps such as registration, label propagation and final segmentation. A 
huge amount of work has been done in this area, because of the ability 
of these methods for MRI image segmentation [40-45]. 

Conclusions
Different methods have been proposed for MRI brain image 

segmentation, but a general method has not been proposed yet. 
Unsupervised methods do not use prior information; therefore, these 
methods cannot use this information for increasing their final results, 
thus they mostly produce a lower accuracy as compared to supervised 
methods especially in the real datasets. Moreover, supervised methods 
need label data for training, which are generated by experts; therefore, 
it consumes many resources and in the most cases this work is 
expensive. Consequently, medical image segmentation and especially 
brain segmentation issue is an open problem which needs to be more 
accurate and precise than the other non-medical image segmentation 
applications.
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