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Introduction
The proportion of dementia patients in society has been increasing 

as life expectancy improves, and preventive measures are an important 
social concern. Alzheimer’s disease International estimated that over 
50 million people worldwide were living with dementia in 2019. The 
current annual cost for dementia care is estimated at 1.0 trillion US 
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 Abstract
Medial temporal atrophy is one of the diagnostic biomarkers for Alzheimer’s disease (AD), but because of its 

limited specificity at this region alone, structural changes throughout the brain need to be investigated. We developed 
an artificial intelligence (AI) algorithm integrating voxel-based morphometry and support vector machine to extract 
features from the entire brain, used the AD Neuroimaging Initiative database for training, and evaluated its utility in 
several cohorts. This AI outperformed expert radiologists for AD diagnosis-the mean accuracy of two radiologists 
was 63.8%, whereas that of the AI was 90.5%. The accuracy for AD diagnosis in several test datasets ranged from 
88.0%-94.2%, and increased to 92.5%-100% when the Mini-Mental State Examination score was included. The 
prediction accuracy for mild cognitive impairment (MCI) progression was 83.2%, which was equal to the highest value 
reported in previous studies. In the AI-positive subjects, 97.6% of the AD and 91.9% of progressive MCI patients had 
AD pathology, defined as cerebrospinal fluid positive for amyloid beta (Aβ) and phosphorylated tau, indicating the 
usefulness of the algorithm for predicting AD pathology. The hazard ratio for MCI progression was 2.1 for Aβ-positive 
patients and 3.6 for AI-positive subjects. Since the results were based on a database specific to AD, they do not 
directly reflect actual clinical performance. But the AI could help clinicians use brain MRI as a biomarker in the clinical 
setting.

dollars, a figure set to double by 2030. According to the Ministry of 
Health, Labor and Welfare in Japan, the social cost of dementia in Japan 
in 2014 was about 14.5 trillion yen and is estimated to increase to 24.3 
trillion yen in 2060. 

The target of ongoing disease modifying therapies (DMTs) for 
Alzheimer’s disease (AD) has shifted from symptomatology-based 
mild cognitive impairment (MCI) to subjects with biologically high 
risk derived from biomarkers that explain the pathogenesis of dementia 
[1]. MCI is considered to be at the cognitive boundary between normal 
aging and dementia. According to the National Institute on Aging and 
the Alzheimer’s Association (NIA-AA), based on culturally appropriate 
normative data, cognitive test scores for individuals with MCI typically 
range from 1.0 to 1.5 standard deviations below the mean for their age 
and education matched peers. However, the NIA-AA emphasizes that 
these ranges are guidelines and not cutoffs, and that setting a cutoff 
value is not recommended for the diagnosis of MCI [2]. AD can be 
conceptualized as a seamless biological and clinical continuum from 
the preclinical (clinically asymptomatic but with AD pathology) to 
clinical phase, in which cognitive impairment severity is not perceptibly 
different at the boundaries. It is still not known in which phase of AD 
pathology DMT should be initiated for optimum cost-effectiveness. 
Considering the degree of certainty of disease manifestation and the 
length of the treatment period, it is important to find ways to identify 
early-stage MCI patients at greater risk of conversion to AD [3].

Brain MRI as a Biomarker of Alzheimer’s Disease: Prediction of Pathology 
by Machine Learning
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The recent and rapid developments in artificial intelligence (AI) 
and machine learning (ML) are expected to bring about a drastic 
change in industrial structure as well. ML requires large and highly 
reliable datasets for training, and the Alzheimer’s disease Neuroimaging 
Initiative (ADNI) database appears to be most suitable for this purpose 
at present. ADNI studies began primarily in the United States, but 
have been extended world-wide, including to Europe, Australia, Japan, 
China, Korea, and Taiwan. An open database also enables researchers 
to compare performance among similar studies, which encourages 
competition and technological improvement. Since computer science is 
a realm where high performance is always required, it is also necessary 
to assess the performance of the latest ML paradigms. Jo et al. have 
reported the 16 studies that have shown high ML performance for AD 
diagnosis and/or prediction of MCI progression using the combination 
of positron emission tomography (PET) and magnetic resonance (MR) 
imaging (MRI) [4]. One study assessed the use of structural MRI alone 
and reported that the accuracy of AD diagnosis using 3D convolutional 
neural network (CNN), 2D CNN, and support vector machine (SVM) 
was 91.1% [5], 91.4% [6], and 93.0% [7], respectively; in two other 
studies, the accuracy of prediction of MCI progression using SVM 
was 74.7% and 75.0% [7,8]. Another recent study reported an almost 
90% accuracy of ML-based MRI analysis for AD diagnosis, and this 
is considered the upper limit [9]. This may be because of the complex 
mixed-pathologies of the underlying disease or that the data used for 
training are not pathologically confirmed. Nevertheless, although these 
studies have demonstrated that ML performs well, it is important to 
note that they lack verification based on independent test data, and 
often do not consider metrics to maximize the overall accuracy of the 
classification model while maintaining generalizability.

 Voxel-based morphometry (VBM) enables the analysis of 
shape-based characteristics of the brain by transforming an individual’s 
brain coordinates to that of a standard brain and converting volumetric 
information into a density map. Coordinate transformation to a standard 
brain enables the measurement of regional brain volume for each region 
of interest (ROI) that is designated in advance. Medial temporal atrophy 
is one of the biomarkers of AD, but several studies have reported the 
utility of more objective measurement [10]. For example, voxel-based 
specific regional analysis system for Alzheimer’s Disease (VSRAD) is a 
software developed to help clinicians diagnose AD based on the z-value 
of a ROI containing the hippocampus and its surroundings. Several 
methods have been reported for extracting regional brain volume 
features using VBM, reducing the number of features by principal 
components analysis [11] and probability distribution functions [12], 
and creating masks using pattern recognition [13] before transferring 
to SVM classifiers. Additionally, methods that create feature values 
using the brain atlas in advance [14,15], using multiple atlases [16,17], 
or using deep learning without VBM have also been reported [18-20].

We have developed software named Brain Anatomical Analysis 
using Diffeomorphic deformation (BAAD) (https://www.fil.ion.ucl.
ac.uk/spm/ext/#BAAD), which integrates VBM and SVM to form 
an “AI” algorithm. BAAD evaluates individual brains using VBM, 
and the regularized features are then passed to a SVM to create an 
eminent algorithm. The purpose of this study is to validate the utility 
of this AI for the diagnosis of AD and for predicting the progression of 
MCI patients. For this purpose, we: 1) validated the AI utility for AD 
diagnosis and prediction of the progression of MCI patients in several 
test data cohorts for the application of this model in medical practice, 
2) verified the superiority of the AI algorithm, which extracts features 
from the entire brain, by comparing with expert radiologists with 
and without the support of VSRAD indicating the degree of atrophy 
in the medial temporal structures, and 3) confirmed whether the AI 
can correctly diagnose AD, from a pathological perspective, based 

on cerebrospinal fluid (CSF) biomarker measurements, which was 
considered important given the complex pathology of the disease. We 
also discuss the potential contribution of the model to DMTs.

Materials and Methods

Participants and data source
The patient data for training and validating the proposed AI was 

obtained from 4 publicly available databases, namely ADNI, Japanese 
ADNI (JADNI), Australian Imaging, Biomarker and Lifestyle (AIBL), 
and Minimal Interval Resonance Imaging in Alzheimer’s disease 
(MIRIAD) databases. ADNI database consists of 4 phases, namely 
ADNI 1, ADNI GO, ADNI 2, and ADNI 3. Data of ADNI and AIBL 
subjects were extracted from the Laboratory of Neuroimaging (LONI) 
Image and Data Archive (ida.loni.usc.edu). JADNI data were extracted 
from the National Bioscience Database Center (Research ID: hum0043.
v1). Detailed information of the database was reported by Iwatsubo 
et al. [21]. The ADNI was launched in 2003, and has been engaged 
since 2004 in longitudinal, multicenter cohort studies of healthy 
elderly individuals and individuals with MCI and early AD. Like the 
ADNI in North America, AIBL and JADNI were launched in 2006 
and 2007, respectively. Details of the database and diagnostic criteria 
were reported by Petersen et al. [22]. The MIRIAD study was designed 
to investigate the feasibility of using MRI as an outcome measure in 
clinical trials for AD treatment. Details of the study were reported by 
Malone et al. [23].

We initially included 1446 subjects from the ADNI database-543 
cognitively normal (NL), 544 MCI, and 359 AD participants. We 
classified MCI as progressive MCI (pMCI) or stable MCI (sMCI) based 
on whether it progressed to AD. Of the sMCI cases, 132 were excluded 
from further analyses because of the short observation period (<4 
years) (Supplemental Figure 1). To reduce potential errors in clinical 
diagnosis, we also excluded 17 AD and 14 pMCI patients who were 
negative for brain amyloid beta (Aβ) deposition on florbetapir (AV-45) 
PET. To verify the generalization capability of the AI, we used other 
datasets of 519 subjects from AIBL, 535 subjects from JADNI, and 69 
subjects from MIRIAD (Table 1).

This study was approved by the Shiga University of Medical Science 
Research Review Board (approval number: 29-012) according to the 
Ethical Guidelines for Medical and Health Research Involving Human 
Subjects.

Image acquisition and processing
Brain structural MR images were acquired using 1.5 T (ADNI 1, 

AIBL, JADNI) and 3.0 T scanners (ADNI GO, ADNI 2) from several 
vendors such as Philips Medical Systems, Siemens, and GE Healthcare. 
All images were scanned under the ADNI protocol conditions 
with 3D-sagittal plane slices and the magnetization prepared rapid 
acquisition gradient echo (MPRAGE) sequence [24]. 

Voxel-based morphometry: MR images were processed using 
the BAAD software (version 4.4) which enables automated VBM. 
The details of a standard VBM procedure have been described 
elsewhere [25]. Coordinate transformation from native space to the 
Montreal Neurological Institute (MNI) space was applied using the 
Diffeomorphic Anatomical Registration Through Exponentiated Lie 
Algebra (DARTEL) algorithm [26]. The DARTEL templates were 
prepared based on 550 healthy control subjects from the Information 
eXtraction from Images (IXI) database. The segmented data were 
modulated for volume estimation using a Jacobian matrix. Total 
intracranial volume (TIV) was calculated as the sum of the gray matter, 
white matter, and CSF volumes.
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Region of interest (ROI) analyses: We used multiple sets of 
adaptive ROIs to reduce the number of feature vectors for the SVM 
classifier instead of applying a voxel-based approach [27]. We used 
the MarsBar toolbox (http://marsbar.sourceforge.net) for ROI-wise 
analysis using Automated Anatomical Labeling atlases, Brodmann’s 
atlas, and the LONI Probabilistic Brain Atlas (LPBA40) in the MNI 
space. Each atlas has 108, 118, and 80 ROIs respectively. For z-score 
estimation, we used TIV as the confounding factor and subjects aged 
over 50 in the IXI database as a reference for age. Z-scores were derived 
using the following formula: ([control mean]-[individual value])/
(control standard deviation).

Machine learning: We expressed the probability of an AD brain 
as the AD likelihood score (ADLS), which represents the distance to 
the hyperplane and is obtained using the posterior probability function, 
Pr=(Y=k|X=x), where the probability Y is the class k given that the input 
variable X is x. The probability is transformed by the sigmoid function 
to squash the value within the range [0,1]; a larger value means a greater 
likelihood of AD. We used the radial basis function for the SVM kernel, 
and the values of parameters were optimized using the ADNI database. 
For training, we introduced the spatial-anatomical approach by using 
ROI z-values as feature vectors; leave-one-out cross validation was used 
to obtain an unbiased estimation and to reduce over-fitting. 

MCI can be diagnosed based on prescribed criteria at the research 
level, but it may be difficult to implement the same complex protocol 
in clinical practice. For this reason, we labeled AD and pMCI as the 
AD spectrum and NL and sMCI as the non-AD spectrum for SVM 
learning. Half (n=642) of the 1283 subjects were randomly selected for 
SVM training (training dataset). To fine-tune the hyperparameters, 
10% of the training dataset was used for validation (n=60). We named 
the created classifier SVMst. Since the assessment of cognitive ability 
was important for the diagnosis of dementia, we included the Mini-
Mental State Examination (MMSE) score in SVM learning, and named 
the classifier SVMcog.

Test datasets and tasks for radiologists: To investigate the 
generality of our algorithm, the AIBL, JADNI, and MIRIAD databases 
were analyzed as test datasets, along with the remaining ADNI subjects 
who were not recruited for training (Table 1). There are several ways 
to measure hippocampal volume, including by manual delineation, 
automated techniques, and qualitative ratings. Previous reports have 
demonstrated that manual and automated measurements are well-
correlated [28,29]. In this study, we used VSRAD (version advance 
2) as an example of an automated technique. The Japanese Society 
of Neurology recommends using VSRAD for AD diagnosis in its 
diagnostic guidelines [30]. VSRAD is based on VBM methods using 
a preset ROI of medial temporal structures, including the entorhinal 
cortex, hippocampus, and amygdala, and represents the z-scores of 
these regions [31]. 

Two radiologists (RI and HK), blinded to patient diagnosis and 
characteristics other than the age and gender, independently reviewed 
structural MRI sets in random order. Both radiologists are board-
certified experts in Japan with more than 20 years of clinical experience. 
MR images were randomly extracted from an ADNI dataset with 100 
AD and 100 NL subjects. First, 10 AD and 10 NL subjects from the 
sets were extracted for training of the radiologists. Second, several days 
later, the radiologists were asked to diagnose AD or NL based on the 
200 structural images. Third, once the diagnosis was completed, the 
radiologists were allowed to modify their initial diagnosis according to 
the VSRAD results.

CSF biomarker measurement: In the ADNI study, CSF biomarkers 
were measured as previously described [32]. Briefly, CSF was collected 
in tubes, frozen, and shipped to the ADNI Biomarker Core laboratory 
at the University of Pennsylvania Medical Center. Aβ1-42, total tau 
(t-tau), and phosphorylated tau (p-tau) levels were measured using the 
Luminex 100 IS (Luminex Corporation, Austin, TX) or BioPlex 100 
immunoassay platform (Bio Rad, Hercules, CA) and the INNOBIA 
AlzBio3 kit (Fujirebio Europe, Ghent, Belgium). The cutoff values for 
each biomarker were set according to published ADNI study group 
data [33] (192 pg/ml, 23 pg/ml, and 93 pg/ml for Aβ, p-tau, and t-tau, 
respectively). The t-tau/Aβ1-42 and p-tau/Aβ1-42 ratios were set to 0.39 
and 0.1, respectively. 

Amyloid PET: Amyloid PET images were obtained using different 
PET scanners, manufactured by GE, Siemens, and Philips. The dynamic 
3D acquisition method was used, consisting of 4 frames of a 5-min 
scan in a 30-60 min interval after intravenous injection of 370 MBq 
(approximately 10 mCi) of 18 F-AV-45. To define the four cortical 
grey matter regions (frontal, anterior/posterior cingulate, lateral 
parietal, lateral temporal), brain MRI for each subject was segmented 
and parcellated using FreeSurfer (version 5.3.0). The standardized 
uptake value ratio (SUVR) was calculated by creating a conventional 
(non-weighted) average across the four main cortical regions and was 
normalized based on the entire cerebellum reference region. All data 
were downloaded from the LONI web site (https://ida.loni.usc.edu/
login.jsp). The SUVR cutoff value was defined as 1.11 according to the 
recommendation from UC Berkeley [34].

Statistics: Statistical analyses were performed using the JMP® 
software (version 14.3, SAS Institute, Cary, NC). Receiver operating 
characteristic (ROC) curves were created to evaluate each biomarker’s 
ability for disease diagnosis. The equations for accuracy, sensitivity, 
specificity, positive predictive value (PPV), negative predictive value 
(NPV), F1, and Matthews correlation coefficient (MCC) are available 
elsewhere [35]. MCC is the geometric mean of the regression coefficients 
for binary classification problem, and it is robust against imbalanced 
classes. The level of statistical significance was set to p<0.05.

Results
The AIBL study comprised more NL subjects than the ADNI and 

JADNI studies. The mean age of NL subjects was significantly different 
between the ADNI-JADNI, ADNI-MIRIAD, AIBL-JADNI, AIBL-
MIRIAD, and ADNI-AIBL pairs (Student’s t-test). The mean age of AD 
patients was significantly different between the ADNI-MIRIAD, JADNI-
MIRIAD, AIBL-MIRIAD, and ADNI-AIBL pairs (Student’s t-test). The 
mean MMSE score of NL subjects was significantly different between 
the AIBL-MIRIAD, AIBL-JADNI, and AIBL-ADNI pairs (Student’s 
t-test). The mean MMSE score of AD patients was significantly different 
in all database pairs (Student’s t-test); the databases in descending order 
of MMSE score are ADNI, JADNI, AIBL and MIRIAD. The ADNI 
studies targeted early-stage AD, while the MIRIAD study targeted more 
advanced stages (Table 1). 

Of 544 MCI cases (260 sMCI and 284 pMCI) in the ADNI database, 
52.2% (284 cases) progressed to AD during follow-up. The observation 
period for pMCI ranged from 6 to 108 months (mean [SD], 43.0 (23.6) 
months; median, 36 months). The observation period for the selected 
sMCI patients (n=128) ranged from 48 to 120 months (mean [SD], 63.0 
(21.8) months; median, 60 months). Patients with pMCI in the ADNI 
database were most likely to progress to AD within 1 year-87.3% of 
cases progressed within 3 years and 95.8% within 4 years (Supplemental 
Figure 1). The apolipoprotein E (ApoE) allele ε4 number (0, 1, 2) was 
significantly different in all pairs except the AD-pMCI and sMCI-NL 
pairs (Steel-Dwass test) (Supplemental Figure 2).
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The relationship between SVMst ADLS and VSRAD z-score in the 
ADNI database (n=1314) is shown in Figure 1. Since VSRAD indicates 
the degree of atrophy in the medial temporal structures based on 
z-score, the subjects in the lower right orthant have less hippocampal 
atrophy, but SVMst indicates high AD probability. Inversely, subjects 
in the upper left orthant have medial temporal atrophy, but SVMst 
indicates low AD probability. Note that AD (red) and pMCI (orange) 
patients are predominant in the lower right quarter, while NL subjects 
(blue) and sMCI patients (light blue) are predominant in the upper left 
quarter. These results suggest that SVMst can presume AD spectrum 
even in a subject without medial temporal atrophy, and can presume 
healthy even in the subjects having medial temporal atrophy.

Results of CSF biomarker analysis are summarized in Supplemental 
Table 1. In terms of Aβ1-42, t-tau, p-tau, t-tau/Aβ1-42, and p-tau/Aβ1-42, 
there were significant differences in all combinations except AD-pMCI 
and NL-sMCI (Wilcoxon test). The distribution of biomarker levels in 
each group is shown in Supplemental Figure 3. The concentration of 
Aβ1-42 was bimodally distributed in NL and sMCI groups. The results of 
AD/NL classification and prediction of MCI progression based on CSF 

biomarker levels are summarized in Supplemental Table 2.

AD-NL classification
The performance of the SVMs in the test datasets are summarized 

in Table 2. The cutoff values for SVMs were set to ADLS>0.5. The 
classification accuracy of SVMst in the test dataset ranged from 88.0% 
to 94.2%. With the addition of the MMSE score, the diagnostic accuracy 
of SVMcog became higher than that of SVMst, ranging from 92.5% to 
100%. The diagnostic accuracy of the two radiologists was 57.5% and 
70.0%, respectively, which were lower than the accuracy of SVMst of 
90.5% (ADLS>0.5). By adding the VSRAD z-value information, the 
diagnostic accuracy of the radiologists improved to 70.0% and 73.0%, 
which was still lower than that of SVMst. The kappa coefficient, which 
is the coincidence rate between the diagnoses of the two radiologists, 
was poor (0.35; p=0.710, McNemar test) at the first diagnosis, but 
improved to 0.56 by referring to the VSRAD (p=0.016, McNemar test) 
(Supplemental Table 3).

Table 1: Demographic features of the databases.

ADNI (n=1283) AIBL (n=519) JADNI (n=535) MIRIAD (n=69)

Group NL (543) AD (342) sMCI(128)* pMCI (270) NL (447) AD (72) NL (152) AD (148) sMCI☨ (114) pMCI (121) NL (23) AD (46)

Age 74.2 ± 5.8 75.2 ± 7.9 72.6 ± 7.8 74.2 ± 7.1 72.4 ± 6.2 73.1 ± 7.9 68.2 ± 5.6 73.9 ± 6.6 73.0 ± 6.0 73.5 ± 5.6 69.7 ± 7.2 69.5 ± 7.0

sex (M/F) 261/282 179/163 80/48 162/108 192/254✢ 30/42 72/80 63/85 66/48 52/69 12-Nov 19/27

MMSE 29.1 ± 1.1 23.2 ± 2.1 28.1 ± 1.6 26.8 ± 1.7 28.7 ± 1.2 20.5 ± 5.6 29.1 ± 1.2 22.5 ± 1.8 26.7 ± 1.9 26.0 ± 1.5 29.5 ± 0.9 17.4 ± 5.8

Note: ADNI: Alzheimer’s disease neuroimaging Initiative; AIBL: Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; JADNI: Japanese Alzheimer’s 
disease neuroimaging Initiative; MIRIAD: Minimal Interval Resonance Imaging in AD; AD: Alzheimer’s disease; NL: cognitively normal subjects; MCI: mild cognitive 
impairment; pMCI: progressive MCI, sMCI: stable MCI; MMSE: Mini-Mental State Examination
*First 260 subjects were selected as sMCI, later 132 subjects were removed because of short observation periods.
☨Not meeting the criteria being stable for 4years or more. 
✢Sex of one subject was unknown in AIBL study.
Pairs with significantly different in the Student’s t-test (p < 0.05) were as follows: Age of NL; ADNI-JADNI, ADNI-MIRIAD, AIBL-JADNI, AIBL-MIRIAD, and ADNI-AIBL. 
Age of AD; ADNI-MIRIAD, JADNI-MIRIAD, AIBL-MIRIAD, and ADNI-AIBL. MMSE of NL; AIBL-MIRIAD, AIBL-JADNI, and AIBL-ADNI. MMSE of AD; ADNI-AIBL, ADNI-
JADNI, JADNI-AIBL, MIRIAD-ADNI, MIRIAD-JADNI, and MIRIAD-AIBL.

Figure 1: Scatter plot between Z score of VSRAD and ADLS of SVMst. The horizontal axis represents the value of ADSL, 
and the vertical axis represents the z-value of VSRAD. The subjects in the lower right quadrant are subjects without medial 
temporal atrophy, but SVMst indicates those as AD spectrum. The upper left quadrant is a group of subjects with medial 
temporal atrophy, but SVMst indicates those as non-AD spectrum.
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Database ADNI train (n=444) ADNI test (n=441) AIBL (n=519) JADNI (n=323) MIRIAD (n=69)

Classifier SVMst SVMcog SVMst SVMcog SVMst SVMcog SVMst SVMcog SVMst SVMcog

AUC 0.968 0.9935 0.9586 0.9906 0.9535 0.9789 0.9461 0.993 0.9934 1

Accuracy (%) 93.5 95.5 89.6 94.6 89.2 92.5 88 95.3 94.2 100

Sensitivity (%) 93.6 95.4 93.5 95.9 94.4 93.1 85.1 95.3 97.8 100

Specificity (%) 93.4 95.6 87.1 93.8 88.4 92.4 90.8 95.4 87 100

PPV (%) 90 93.2 81.9 90.5 56.7 66.3 90 95.3 93.8 100

NPV (%) 95.8 97 95.6 97.3 99 98.8 86.3 95.4 95.2 100

F1 (%) 91.8 94.3 87.3 93.1 70.8 77.5 87.5 95.3 95.7 100

MCC (%) 86.4 90.6 79 88.7 67.9 74.6 76.1 90.7 86.9 100

Note: The ADNI results were the data from validation set of this database.
The cutoff values of the SVMs were ADLS >0.5.
ADNI: Alzheimer’s disease neuroimaging Initiative; AIBL: Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; JADNI: Japanese ADNI; MIRIAD: Minimal 
Interval Resonance Imaging in AD; PPV: Positive Predictive Rate (=precision); NPV: Negative Predictive Rate; AUC: Area Under the Curve; MCC: Matthews Correlation 
Coefficient

Table 2: Results of SVMs for AD diagnosis in several datasets.

Table 3: Cases of false negative and false positive with BAAD-AI.

MRI in Figure 6 Clinical 
diagnosis ADLS VSRAD Age Sex MMSE ApoE AV-45 PET

FN

A
AD 0.16 0.73 73 F 25 -/- 1.4

AD 0.05 1.21 61 M 25 04-Apr 1.28

B
pMCI 0.01 0.54 70 F 27 03-Mar 1.27

pMCI 0.05 1.11 61 F 30 03-Apr 1.16

FP

C

NL 0.8 2.7 65 F 29 03-Mar 1.03

NL 0.88 0.64 71 F 30 03-Apr 1.12

NL 0.92 1.72 80 M 29 03-Mar 1.03

NL 0.88 1.42 80 M 28 03-Apr 1.08

NL 0.83 2.92 80 F 28 03-Apr 0.95

NL 0.85 0.93 68 M 27 03-Mar 1.15

NL 0.88 0.93 71 M 30 03-Mar 1.03

NL 0.86 2.18 77 M 30 03-Mar 1.14

NL 0.81 1.83 80 M 29 03-Mar 1.13

NL 0.88 2.78 43 M 30 03-Mar 1.12

D

sMCI 1 3.49 72 M 25 03-Apr 1.14

sMCI 0.83 2.88 74 M 27 03-Mar 1.6

sMCI 0.93 1.5 83 M 27 03-Mar 1

sMCI 0.87 0.56 82 F 30 03-Mar 1.52

Note: AD: Alzheimer’s Disease; NL: Cognitively Normal Subjects; MCI: Mild Cognitive Impairment; pMCI: progressive MCI; sMCI: stable MCI; MMSE: Mini-Mental State 
Examination; ApoE: Apolipoprotein E; AV-45 PET: florbetapir (AV-45) positron Emission Tomography

Prediction of disease progression
To assess the ability of the two SVMs to predict MCI progression, 

we analyzed data from 138 pMCI and 64 sMCI subjects from the 
ADNI test dataset (Figure 2). Cutoff values for the SVMs were set to 
ADLS>0.5. The predictive accuracy of SVMst and SVMcog were 83.2% 
and 85.1%, respectively. To validate the versatility, we further examined 
this using the JADNI database. Unfortunately, due to short follow-
up periods none of the sMCI patients met our criteria; therefore, we 
substituted NL for sMCI patients. For reference, we also examined the 
ADNI test dataset with the same combination. The accuracy of SVMst 
and SVM cog for classification of NL and pMCI in JADNI was 86.4% 
and 91.2%, respectively, not much different from 87.3% and 90.7% in 
ADNI. Although these results cannot be interpreted as the SVMs being 

substantially accurate for predicting MCI progression in the JADNI 
dataset, it could be expected that the SVMs would work well in it, since 
the accuracy did not differ between the ADNI test dataset and JADNI 
dataset.

With regard to prediction of disease progression among ADNI test 
dataset subjects who did not have dementia (NL and MCI), the PPV 
was 70.6% for SVMst and 72.7% for SVMcog when sensitivity was set 
greater than 90%. Likewise, the NPV was 95.6% for SVMst and 95.7% 
for SVMcog with sensitivity was greater than 90%. When restricted 
to MCI patients in this data set, the PPV for SVMst and SVMcog was 
89.3% and 91.9%, respectively, and the corresponding NPV was 79.0% 
and 80.3% respectively, with sensitivity greater than 90%.
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AD likelihood score and brain Aβ deposition
Since the cut-off value of CSF Aβ1-42 concentration has been defined 

as 192 pg/ml in many previous studies [33,36-38], and the concentration 
is inversely correlated with brain Aβ deposition, we designated any 
subject with CSF Aβ1-42, <192 pg/ml as Aβ positive. 92.2% of subjects in 
the ADNI test dataset who were classified as positive using the SVMst 
(ADLS>0.5) were Aβ positive (Figure 3). In the SVMst-positive group, 
the percentage of pMCI (n=72) cases among the Aβ-positive MCI 
patients (n=75) was 96.0%, or 97.3% of all pMCI patients in this class 
(n=74). In addition, two of five MCI patients (40.0%) progressed to 
AD, even though they were Aβ negative. In the SVMst-negative group, 
46.6% of the subjects were Aβ positive, of which pMCI patients (n=19) 
accounted for 48.7% of the total MCI patients (n=39). In this group, 
only 13.4% (32/238) were AD or pMCI patients. Among only the Aβ-
negative MCI patients (n=21), none progressed to AD. These results 
suggest that there is a strong association between Aβ accumulation and 
AD-like brain atrophy. Note that 79.8% (91/114) of the Aβ-positive 
MCI subjects progressed to AD within four years, and 79.1% (72/91) of 
them were SVMst-positive.

CSF biomarkers: in vivo diagnosis of AD pathology
We also interpreted our results by relating them to the ATN system 

recently proposed by the NIA-AA [39]. To speculate on the presence of 
AD pathology in vivo, we used Aβ1-42, and p-tau CSF biomarker data 
from the ADNI database, representing extracellular amyloid plaques 
(low CSF Aβ1-42) and intracellular neurofibrillary tangles (elevated CSF 
p-tau). In the SVMst-positive group, 156 of 180 subjects (86.7%) had 
AD pathology based on CSF biomarkers. Conversely, 86 of 238 subjects 
(36.1%) had AD pathology in the SVMst-negative group (Figure 3). 

In the ADNI database, 91.7% and 90.5% subjects were consistent 
with AD pathology (positive for Aβ1-42 and p-tau) based on CSF 
biomarkers in patients with clinically diagnosed AD and pMCI, 
respectively. In the ADNI test dataset, when SVMst was positive, 97.5% 
of AD and 91.9% of pMCI patients were consistent with AD pathology 
based on CSF biomarkers. Similarly, when SVMcog was positive, 94.4% 
of AD and 92.1% of pMCI patients were consistent with AD pathology 
based on CSF biomarkers, respectively (Supplemental Figure 4). 

Figure 2: ROC curves for prediction of MCI progression by SVMs. The subjects of the ADNI were selected for the test dataset. The cutoff values of SVMs were set to 
ADLS>0.5. The accuracy of SVMst and SVMcog in predicting MCI progression was 83.0% and 85.0%, respectively. Since the ADNI database was used for training, it 
was further examined using the JADNI database to verify its generality. Unfortunately, due to the short follow-up period in JADNI, NL was replaced by sMCI patients. 
For reference, we also validated the same combination in the ADNI. The accuracy of SVMst and SVM cog for classification of NL and pMCI in JADNI was 86.4% and 
91.2%, respectively, not much different from 87.3% and 90.7% in ADNI. Numerical values in the graph indicate area under the receiver operating characteristic (ROC) 
curve and its area under the curve (AUC).

Figure 3: Number of subjects per CSF biomarkers in groups classified by SVMst. In the SVMst-positive (ADLS>0.5) group, 72/75 (96.0%) of the MCI with Aβ-positive 
progressed to AD. Note that 92.2% of the subjects classified as SVMst-positive were Aβ-positive. In the SVMst-negative group, 46.6% of subjects were Aβ-positive, 
of which 19/39 (48.7%) of MCI progressed to AD. These results clearly show that among MCI with positive Aβ, those with positive SVMst are more likely to convert 
to AD. Numerical values in the figure indicate the number of subject in each group. “A” and “pT” indicate amyloid β and phosphorylated tau of the cerebrospinal fluid, 
respectively, and the signs in the parentheses indicate positive or negative for these biomarkers. The light gray in the figure indicates positive for amyloid-beta and 
the dark gray for negative as well.
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Progression-free survival analysis was performed to estimate the 
risk of conversion for each biomarker (Figure 4). The hazard ratios 
(HRs) are summarized in Supplemental Table 4. In case of subjects 
designated Aβ-positive based on CSF Aβ1-42, the HR was 4.43, which 
was higher than VSRAD, but was lower than that of SVMst (2.52 and 
4.86, respectively).

Discussion
AI detects characteristic atrophic pattern in AD

We showed that SVMst and SVMcog can offer a critical opportunity 
for working on the diagnosis of AD and predicting disease progression 
in MCI patients. With the addition of the MMSE score, the diagnostic 
accuracy of SVMcog reached up to 95%, and the accuracy remained 
high for the other test-set cohorts as well. As far as we know, no 
studies have investigated the accuracy of AI or ML in several cohorts, 
including the JADNI. Medial temporal atrophy has long been accepted 
as a validated marker of AD and is estimated by radiologists visually 
or quantified using computer algorisms such as VSRAD. However, it 
is known that hippocampal involvement is not an essential factor in 
AD, and 10%-15% of cases of AD are hippocampal-sparing [39-41]. 
Therefore, relying solely on hippocampal atrophy is insufficient for 
AD diagnosis. As shown in Figure 1, it was apparent that the SVMst 
ADLS is not based solely on medial temporal atrophy, but on that of 
the whole brain. Tau pathology typically extends by neuron-to-neuron 
transmission, generally starting transentorhinally and extending 
medially [42], but it may extend laterally faster when Aβ is deposited 
in the temporal cortex. When tau pathology extends to the neocortex 
(Braak stage V/VI), which invariably affects cognition, patients start to 
exhibit AD symptoms [43]. Interestingly, several reports suggest that 
Aβ accelerates tau pathology extension [44,45]. Tau protein extracted 
from human brains with Aβ plaques was more seed-competent than 
that from brains without Aβ plaques [46]. Since tau pathology is a 
major driver of neurodegeneration in AD, and topological tau-PET 
distribution and subsequent brain atrophy are well correlated [47-49], 
our algorithm may be able to detect cell-to-cell transmission of tau 
pathology as a characteristic atrophic pattern in AD [50].

AI outperformed clinicians in MRI diagnosis of AD
In our model, all images were preprocessed using VBM and 

the features were standardized and simplified, that is, image noise 
removal, brain segmentation, coordinate transformation, brain volume 
adjustment by TIV and age, and finally SVM extraction of features 
to classify the brains in hyperspace was performed. To extract and 
integrate a large amount of information by surveying the whole brain 
is undoubtedly beyond the scope of human ability. In fact, the SVMs 
outperformed two expert radiologists in terms of AD diagnosis-the 
diagnostic accuracy of SVMst was 90.5%, whereas the mean accuracy 
of the two radiologists was 63.8%. It is noteworthy that the VSRAD 

z-score improved the accuracy of AD diagnosis by radiologists, but it 
was still lower than that of our AI model. Our algorithm utilized the 
whole brain with varying degrees of influence of various anatomic 
areas, and the diagnostic performance was apparently better than that 
of expert radiologists. 

AI is not a panacea
We do not intend to claim that our algorithm is unique or can 

cover any type of cognitive disease, since the ADNI database is already 
selected and simplified due to the exclusion of patients with other types 
of dementia. We also acknowledge that the clinical use of AI is some way 
short of being a useful clinical tool that can replace an expert. However, 
considering the rapid increase in the number of dementia patients who 
need to be cared for by primary clinicians, we believe that our AI can 
help clinicians estimate the likelihood of the disease. The exclusion 
criteria in the ADNI study-‘exclude any significant neurologic disease 
other than AD’-may also be difficult even for experts to implement 
without complete knowledge of the pathological findings. Thus, it is 
important to preemptively work towards how clinicians can use AI to 
perform diagnoses reliably and cost-effectively in the practical setting.

If there is a possibility of other dementia diseases, single-photon 
emission computed tomography imaging of cerebral blood flow is 
one technique with considerable diagnostic value, particularly in 
differentiating AD from frontotemporal dementia [51,52]. Dopamine 
transporter imaging is a useful tool to diagnose parkinsonism and its 
related disorders if dementia with Lewy bodies (DLB) or DLB with 
mixed pathology is suspected.

Metaiodobenzylguanidine myocardial scintigraphy is a widely 
accepted tool for differentiating Parkinson’s disease or DLB from other 
Parkinson-related disorders. 

Here, we would like to call attention to the users by presenting the 
limitations of our AI. We focused on the false-negative cases where 
ADLS was less than 0.2 but the clinical diagnosis was AD or pMCI, and 
the false-positive cases where the clinical diagnosis was NL or sMCI 
despite ADLS of 0.8 or higher. The cases that did not undergo amyloid 
PET were excluded. The results were shown in Table 3 and Figures 5 
and 6. The two false-negative AD cases and two pMCI cases extracted 
here were all positive for amyloid PET. The MRIs of each representative 
case were shown in Figure 6A and 6B. In both cases, brain atrophy was 
not noticeable. False-positive cases were observed in 10 NL and 4 sMCI. 
The MRIs of the representative cases among these were shown in Figure 
6C and 6D. All of the false positive cases should have been clinically 
diagnosed as NL or MCI due to their high MMSE scores. On the other 
hand, 5 out of 10 false-positive NL cases and 2 out of 4 sMCI cases 
were positive for brain amyloid on PET, indicating that follow-up is 
necessary for cases with high ADLS. 

Figure 4: Progression-free survival curves in MCI patients. Symbols in parentheses indicate positive (+) or negative (-) results.
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Figure 5: False negative cases with low ADLS and false positive cases with high ADLS
This figure is derived from Figure 1. Cases that underwent AV-45 PET were plotted in the right side. False-negative cases 
with ADLS below 0.2 and false-positive cases with ADLS above 0.8 are circled by squares. A~D indicates the cases of MRI 
in Figure 6. 

Figure 6: Illustrative MRI of the cases with false negative and false positive. Please refer to Table 3 for details of each case. 
Cases A and B had positive amyloid PET results and were clinically diagnosed as AD and MCI, respectively, despite ADLS 
less than 0.2. Case B was subsequently converted to AD. Cases C and D had ADLS greater than 0.8, respectively. Cases 
C and D had negative amyloid PET and were clinically diagnosed as NL and MCI, respectively; case D remained MCI for 8 
years.

Concordance between clinical diagnosis and pathology is 
~90% in ADNI

Along with the elucidation of the AD pathology, the NIA-AA 
research framework advocated a new biomarker-based grouping called 
the ATN system [38]. Cortical amyloid PET ligand binding or low CSF 
Aβ42 are biomarkers of Aβ plaques (A). Elevated CSF phosphorylated 
tau and cortical tau PET ligand binding are biomarkers of fibrillar tau 
(T). Elevated CSF t-tau, 18 F-labeled fluoro-2-deoxyglucose (FDG) 
PET hypometabolism, and brain atrophy on MRI are biomarkers of 
neurodegeneration or neuronal injury (N). According to this system, 
extracellular amyloid plaques (A) and intracellular neurofibrillary 
tangles (T) are histopathologic features of AD. It is interesting to note 
that 88% of clinically diagnosed AD and 86.1% of pMCI cases in the 
ADNI study were consistent with the results of in vivo AD pathology 
assessed using CSF biomarkers, since similar results were reported 
from the Consortium to Establish a Registry for Alzheimer’s Disease 

study, which reported that 87% patients with clinically diagnosed AD 
are neuropathologically confirmed on autopsy [53]. This demonstrates 
the excellent agreement of clinical diagnosis in the ADNI study, and 
also the limitation of maximum 90%-95% accuracy for AI or ML was 
trained based on clinical diagnosis in the study.

AI reflects Aβ deposition in the brain
In the SVMst-classified high AD likelihood (ADLS>0.5) group, 

89.1% of the subjects were Aβ positive, 91.1% had AD or pMCI, and 
only 8.9% were NL or had sMCI. Of all MCI patients classified into 
high AD likelihood group, 92.5% had pMCI, whereas in the SVMst-
classified low AD likelihood group, the percentage of subjects with 
and without Aβ deposition were 46.7% and 53.3 %, respectively. Of 
all MCI patients who were classified into low AD likelihood group, 
65.8% had sMCI, and 87.5% were NL or had sMCI. Therefore, SVMst 
has enough potential as a primary screening test to select candidates 

J Alzheimers Dis Parkinsonism, an open access   ournalJ
.



Page 9 of 11

Citation: Ishida M, Syaifullah AH, Ito R, Kitahara H, Tanigaki K, et al. (2021) Brain MRI as a Biomarker of Alzheimer’s Disease: Prediction of the Pathology 
by Machine Learning. J Alzheimers Dis Parkinsonism S6: 021.

Special Issue 2021 • S6-021
ISSN: 2161-0460

for DMT before amyloid PET examination. We showed that the risk of 
disease progression from MCI to AD was better predicted by SVMst 
than by CSF biomarkers (Supplemental Table 3). This result is not 
surprising, since Aβ deposition occurs earlier in AD pathogenesis 
than neuronal injury. Therefore, it is important to ascertain whether 
the therapeutic window is still open after neuronal injury has already 
started. Unfortunately, we do not have an answer to this, and it would 
be actually difficult to broaden the scope of disease-modifying drugs to 
a subject before any symptoms occur. 

Concerns about DMT for Aβ
Recently, the 221AD301 ENGAGE study reported that subjects 

who received the highest aducanumab dose had a significant reduction 
in cognitive decline with regard to the primary endpoint, the Clinical 
Dementia Rating-Sum of Boxes. The subjects were amyloid PET 
positive MCI patients with AD or mild AD and MMSE scores between 
24 and 30. It is noteworthy that this study suggested that clearance of 
aggregated Aβ can reduce the cognitive decline due to AD pathology 
and, above all, that the DMT window is still open in MCI and even in 
early-stage AD. Nevertheless, although starting treatment earlier may 
be more effective, it should be noted that people with Aβ burden do not 
necessarily progress to AD. For example, according to NIA-AA criteria, 
the progression risk for isolated amyloid pathology is only 22% [54]. 
Therefore, not every Aβ-positive MCI patient is likely to be a definite 
candidate for Aβ modification therapy. Prior studies have reported 
Aβ-positive MCI patient conversion rates of 40% [55], 48% [56], 57% 
[57,58] and 71% [59]. The variation between these studies may depend 
on the speed of Aβ and tau pathology progression of the subjects rather 
than the follow-up period. A prospective amyloid and tau PET study 
showed that an antecedent rise in Aβ was associated with subsequent 
tau-related changes in the brains of clinically normal elderly subjects 
[60]. 

Collaboration between Aβ detection and MRI-AI for selection 
of DMT candidate

With the traditional approach of incorporating biomarkers after the 
appearance of clinical symptoms, it may be rather late to apply drug 
therapies and other interventions. According to the amyloid cascade 
hypothesis, amyloidosis induces or facilitates the spread of pathologic 
tau, pathologic tau is immediately proximate to neurodegeneration, and 
neurodegeneration is the proximate cause of cognitive decline. Since ‘A’ 
and ‘T’ proteinopathies define AD as a unique disease among the many 
that can lead to dementia, the most ideal time to apply DMT efficiently 
would be before ‘N’ but following ‘A’ and ‘T’. What is important is how 
soon the appearance of ‘N’ can be detected. In our study, the AI was 
better than CSF biomarkers at predicting progression (Figure 4). CSF 
sample procurement needs lumbar puncture and is less informative 
regarding anatomical distribution compared to neuronal imaging. 
For this reason, patients with Aβ deposition by PET and high risk for 
progression predicted by MRI-AI may be strong candidates for DMT.

Limitations of the Study
WThis study had several limitations. First, as is frequently 

discussed in studies using the ADNI database, patients with dementia 
not related to AD are already carefully excluded. Therefore, the clinical 
relevance of AD diagnosis by our model is restricted to scenarios 
where patients with other forms of dementia have been screened out. 
Second, the definition of sMCI in our study is based on the length 
of the follow-up period. For example, some MCI patients may have 
eventually progressed to AD by now. Therefore, prediction by the AI 
cannot be used for long-term preventive treatment. Since the criteria 
for extraction of MCI patients is weighted to the amnestic type in the 

ADNI study, our model cannot deal with non-amnestic types. Third, 
measurement of CSF biomarkers can have various issues. For example, 
there are biases and random variations in biomarker measurements 
both within and between laboratories, and the markers only reflect part 
of the pathology underlying AD [61].

Conclusion
Based on the results of this study, our AI may be a promising 

tool that can support clinicians in diagnosing AD and predicting its 
progression, but the possibility of dementia other than that related 
to AD should always be kept in mind. When SVMst suggests a high 
probability of AD spectrum, about 90% of the patients are Aβ positive. 
In case of MCI, hazard ratio of conversion to AD is 3.6 when the 
ADLS is more than 0.5. Therefore, it is advisable that these patients are 
carefully observed for more than three years, or that molecular PET is 
considered to confirm AD pathology for DMT.

DMTs are likely to succeed if initiated at the preclinical stage of AD; 
furthermore, biomarker driven strategies for selecting the target are 
critical. In this respect, our AI could help optimize selection algorithms 
in order to increase study power and decrease observational periods.
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