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Abstract
As oily fish consumption has increased worldwide, farmed salmonid production has also dramatically increased. 

As such, farming and the satellite industries affiliated with the salmonid production chain form an increasingly important 
economic foundation for many communities in Norway and throughout Northern Europe. However, despite the 
successful growth of the European salmon industry, quality concerns pose significant challenges to the sustainability of 
farmed salmonid production. For instance, muscle gaping, the undesirable lace-like, irregular voids or gapes in the 
final product, can lead to 38% of downgrading during secondary production. These blemishes lead to consumer 
rejection of whole cuts at the fish counter while the resulting decrease in structural integrity of the meat also poses 
significant limitations to the further processing of value-added products. Because of such losses, determining the 
underlying causes of gaping and developing better detection methods that allow evaluation of intervention strategies 
have become high research priorities for the industry and governmental agencies alike. Automated Image Analysis 
(IA) is one such technology that allows the objective measure of gaping on fish carcasses. Efforts to translate this 
technology to a platform that can be utilized efficiently in packing plants are progressing rapidly and producing 
promising results. The ability to objectively and rapidly detect graded differences in gaping of salmon products in 
commercial settings will allow the identification of critical points in the supply chain that impact upon product quality. 
Applying IA methods to identify these critical points and to assess the effectiveness of intervention strategies will 
allow salmon producers to bridge the quality gap that currently exists between the fish farm and the consumer. 
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Introduction
Global salmon farming produces about 1.4 million tonnes of fish 

annually [1] with an average price per kilo of about 4.6 Euros [2]. The 
positive health benefits associated with the consumption of oily fish and 
the high efficiency of converting protein to fish muscle are significant 
attributes of fish production that have driven the industry’s growth 
and increasing impact upon local communities. Countries located in 
Northern Europe, Canada and Chile comprise the primary producers 
of farmed salmon products while Europe, Japan and North America 
represent the industry’s primary markets. 

Farmed salmon is marketed either as fresh whole fish, fillets and 
steaks or packaged as frozen or smoked products. As farm prices have 
tended to decrease, profitability has increasingly become dependent 
upon providing consistent, high-quality products and niche marketing 
including organic farming certification and fish welfare-related 
schemes. Furthermore, value-added processing like smoked fillets or 
smoked salmon slices place a premium on the flesh quality itself. Thus, 
intrinsic characteristics such as fillet yield, fillet coloration, chemical 
body composition, texture and loss of fillet integrity (gaping) have been 
given special attention to optimize the quality in fish products [3]. In 
general, both processers and consumers prefer firm fish fillets with even 
colouration and no gaping.

Muscle gaping in fillets is particularly problematic because gaping 
gives rise to lace-like slices and irregular shapes in the muscle that 
significantly detract from the desirability of the final product. 
Consequently, gaping can decrease salmon value in up to 38% of the 
downgraded secondary processing of the carcass. Thus gaping 
represents one of the most important quality issues facing the salmon 
industry [4]. In order to help the industry overcome this significant 
quality problem, better methods for identifying gaping in fish cuts 
need to be developed both to monitor the effects of intervention 
strategies upon the problem and to allow study of the underlying 
causes. The present review evaluates how gaping in salmonids is 
affected by parameters such as anatomical and histological features of 
the carcass, seasonal variation in growing conditions, current 
aquaculture practices, the post-mortem changes that occur during the 

conversion of muscle to meat, and product storage procedures. 
Finally, current methods for gaping detection and their limitations 
and promise are briefly discussed. 

Salmonid anatomy and physiology: going from muscle to 
meat 

Anatomy: Salmon muscle structure is an important determinant 
of its textural characteristics including the structural cohesion of meat 
cuts [5]. For the purposes of meat quality, the fish carcass can primarily 
be thought of as a long axial muscle that facilitates swimming. Along 
this axial muscle, individual muscle cells are organized into “muscle 
blocks” or myotomes that are separated by sheets of connective tissue, 
called myocommata or myosepta consisting of collagenous connective 
tissue, adipocytes and non-adipose cells. Myosepta in turn function to 
anchor whole axial muscle to both the skeleton and the skin and are 
recognizable as repeating white bands separating the “salmon-colored” 
myotomes (Figures 1 and 2). Additionally, myotomes are further 
organized by horizontal and medial septa that function to separate 
the myotome into four sections comprising the left and right epaxial 
(dorsal) and hypaxial (ventral) muscles. Collagen fibers emerging 
from the myosepta ultimately give rise to the perimysium, the 
specialized connective tissue sheath that surrounds each muscle fiber 
[5]. 

Fast-twitch or white muscle fibers comprise the predominant fiber 
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type in the skeletal muscle of salmon (Figures 1 and 2). “White” muscle 
is poorly vascularized and its characteristically low myoglobin levels 
give rise to the pale color generally associated with fish muscle [6]. 
However, true “white” muscle in salmon generally takes on a reddish 
hue as the consequence of high levels of carotenoids in the typical 
salmon diet. True slow-twitch fibers or “red” muscle in salmon presents 
as thin lateral strips of darker muscle tissue between the “white” muscle 
and the skin (Figure 1). “Red” muscle in salmon is used for long and 
sustained swimming movement, whereas “white” muscle is involved in 
burst swimming activity.

On average, in salmon, white fibers have diameters between 50 
and 100 µm while red muscle fibers range between 25 and 45 μm [6]. 
Tightly packed myofibrils, the organelles of contraction, contribute the 
greatest to myofiber volume, whereas sarcoplasmic constituents such as 
mitochondria, myoglobin and glycogen granules contribute relatively 
little to myofiber size. Anaerobic glycolysis is the main source of energy 
for white muscle, although aerobic breakdown of lipids in white muscle 
also takes place in salmonids [6]. 

Salmonids store carcass lipids both in adipocytes located within 

the myosepta and as intrafibrillar lipid droplets. The size and density 
of adipocytes varies according to anatomical location with adipocyte 
volume and number increasing closer to the belly [7]. Adipocytes 
contribute to carcass value because they represent the important site 
for the storage of omega-3 fatty acids. The health benefits associated 
with consumption of this class of lipids has contributed to the 
increased demand for salmon meat that has occurred over the last 
several decades [7].

Growth and histological muscle features: Unlike in mammals, 
growth is continuous throughout the lifespan of fish. Such muscle 
growth in fish is accomplished both by the recruitment of new muscle 
fibers and by an increase in muscle fiber size [8]. Also in contrast to 
mammals, fish are poikilothermic. Fish thus experience depressed 
appetite and reduced rates of muscle fiber recruitment and hypertrophy 
in response to the shorter days and lower temperatures associated with 
the winter season [9]. Additionally, muscle fiber size and number and 
connective tissue remodelling within the developing muscle are also 
influenced by composition of the diet, feeding regimes, swimming 
speed, salmon strain and genotype [8,10,11]. 

Rigor mortis and post-mortem degradation of muscle tissue: 
Fish muscle undergoes conversion through a series of post-mortem 
changes that must occur in a controlled manner for optimal meat 
quality. Immediately following harvest, fish muscle is soft (pre-rigor), 
but gradually carcass muscles stiffen (rigor) before  undergoing a final 
post-rigor softening. These changes are necessary for the muscle to 
assume the texture most often associated with quality cuts at the fish 
counter. The timing of onset and the intensity and duration of rigor is 
heavily influenced by pre-harvest nutritional status [12], harvest-
associated stress [12,13], and post-harvest storage conditions [14]. As 
post-mortem degradation of muscle protein occurs, detachments 
between individual myofibers become visible following one day of 
storage [15] while complete myofiber detachment from the 
myocommata can be observed by 5 days post-mortem [15]. 

The duration of rigor appears especially sensitive to stress responses 
in salmon and has been shown to last a mere 30 hours in stressed fish, 
up to 60 hours in fish exposed to stressors but calmed by anaesthesia 
[16], and to last between 72 and 120 hours in rested, unstressed fish 
[17,18]. Furthermore, intense muscular contraction in the whole fish 
during rigor can itself lead to gaping by damaging connective tissue and 
weakening the associations between myofibers and the myocommata, 
an outcome that is exacerbated by filleting the carcass. Finally, gaping 
after filleting is promoted with higher temperature as this weakens the 
connective tissue and tends to be associated with stronger contraction 
of the muscle [19]. 

Gaping: Typically a “quality” fillet is firm and devoid of gaping. 
However, gaping has been registered in farmed salmon [19], trout [19] 
both wild and farmed cod [20] as well as in other fish species [19]. 
Gapes in fish fillets have a characteristic appearance exemplified by 
grooves or splits creating voids in the muscle that reveal the membrane 
lining where collagen fibers transition to the perimysium between the 
myocommata and muscle fibers. As gaping becomes more pronounced, 
this membrane lining is lost resulting in detachment of the sarcolemma 
completely from the base of the muscle fiber [21]. This does not occur 
evenly over the entire fillet but is often concentrated near but not in 
the “soft stripe”, a medial area located near vertebra where the 
myosepta-myotome structure is less distinct. Anecdotal evidence  
suggests co-occurrence of gaping and big fillet areas without clear 
separation between myotome-myocommata (soft band) [22], an area 
that may be a growth region in the muscle [23].  Anecdotal evidence 

Figure 1: The “Norwegian Quality Cut” of Atlantic salmon is used by the 
industry as a standard by which comparison between products can be made. 
Inset: histology of the muscle-connective tissue interface, a key element in 
gaping. mf, muscle fiber; ct, connective tissue; pn, peripheral nucleus; s, skin; 
myos, myosepta; vs, ventral septa; sb, potential soft band; ve, vertebra; hs, 
horizontal septa; rm, red muscle; ac, abdomen cavity; myot, myotome.

Figure 2: A fresh Atlantic salmon fillet with obvious gaping.
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from the Norwegian fish farming industry in 2007 suggests a high co-
occurrence of large gapes and a prominent jelly-like band, or soft stripe, 
in the salmon fillet [22]. An image analysis method to quantify areas of 
soft bands has been developed (Merkin et al., unpublished). However, 
gaping may occur anywhere in or on the periphery of the muscle tissue 
confounding attempts to correlate anatomy to the underlying cause of 
such structural issues.

In more strict terms, gaping refers to the appearance of slits (gapes) 
(Figures 2 and 3) in the connective tissue between muscle segments or 
between individual myofibers in fish fillets. In whole salmon or fresh 
and smoked fillets, gaping appears as slits, whereas in smoked salmon 
slices, gaping appears as holes in the slices and notches in the slice 
borders [24]. There is a positive correlation between soft texture and the 
occurrence of gaping in salmonids, with firmer fillets having less gaping 
[25,26]. Gapes make the fillet difficult to skin and to slice, and badly 
affected fish can only be used in cheaper products like fish meal, fish oil 
or fish cakes [19,27]. Thus, the occurrence of gaping has a significant 
negative impact on profitability.

Causes of gaping

The variation in gaping is partly explained by the variation in muscle 
fiber density which is inversely correlated with degree of gaping [8]. Since 
the rigor force of a muscle is proportional to the cross-sectional area of 
its muscle fibers, fiber density and the relative amount and distribution 
of connective tissue may be one of the determinants for the gaping 
phenomenon in post-mortem flesh [8]. Little or no gaping is observed 
in fish with a fiber density in excess of 95 fibers per square millimeter 
muscle [28]. Moreover Mørkøre et al. observed that raw fillets with 
low fiber cross-sectional area (<12.5 µm2 on average) had significantly 
firmer texture compared with fillets comprised of larger fibers [29]. 
This suggests that any selection program that influences muscle fiber 
dynamics may also unintentionally affect the degree of post-harvest 
gaping. Thus it is important to develop a better understanding of the 
association of muscle fiber size with gaping and meat quality as well as 
to develop markers for gaping that could potentially be incorporated 
into selection programs [30]. However, other factors extrinsic to muscle 
fiber development such as pre-slaughter growth patterns, slaughter 
season, stress, handling, and storage likely contribute to the incidence 
of gaping.

Seasonality influences fillet quality in poikilotherms and seasonal 
variation in salmon texture is well documented though the explanations 
for the causal mechanisms are manifold [31-35]. During rearing in 
sea-cages, Atlantic salmon are affected by predictable annual cycles 
in biotic and abiotic environmental factors, including photoperiod 
and temperature. Previous research has demonstrated that variation 
in water temperature affects feed intake, feed utilization and growth 

[31]. During a northern winter, salmon appetite normally declines 
and feeding drops off. Approximately 2 months after resumption of 
feeding, muscle carbohydrate stores improve. Anaerobic glycolysis of 
the increased carbohydrate pool may rapidly decrease postmortem pH 
in the muscle [36] and there is a strong negative correlation between the 
postmortem decline in pH and the increase in gaping during summer 
[19,27].

Periods of rapid growth in Rainbow trout (Onchorhynchus 
gairdneri) favour fiber hypertrophy, while periods of slow growth 
favour fiber recruitment [11]. During the winter season, the ratio of 
small diameter muscle fibers increases in Atlantic salmon [5]. Moreover, 
differential growth rates have been observed for the dorsal and lateral 
“white” epaxial muscle in trout, where the dorsal area had more small 
fibers and slower fiber enlargement [11]. Anecdotal information from 
fish farmers suggests that soft flesh is correlated with rapid growth rate. 
Hence post mortem muscle softness may be a “natural” result of muscle 
remodelling associated with periods of accelerated muscle growth 
[22]. While the underlying cellular events responsible for changes in 
structural integrity associated with rapidly remodelled muscle are 
largely unknown, softer muscle expresses higher levels of gelatinase 
activity, ubiquitination, and protease activity, all changes that are 
consistent with the notion that muscle and connective tissue ultra 
structure is changed [22]. Therefore gaping may also be associated 
with phases in the growth cycle [4], although not all studies confirm 
the effect of fast growth on texture in salmon [37].

Regardless, degradation of the interface between muscle and 
connective tissue appears to be a key element in the development of 
gaping in whole muscle. It is likely that connective tissue remodelling 
elicited through changes in enzymatic activity and connective 
tissue fiber expression underlies the structural changes that result in 
suboptimal interaction of myofibers and the myocommata. It has been 
speculated that in the myocommata of farmed fish, the infiltration of 
lipid droplets can lead to a decrease in the strength of collagen thus 
stimulating gaping in fish loins after filleting [38]. Collagen influences 
the texture and function of muscles [39]. For instance, the structural 
integrity of the tissue itself is dictated by the degree of cross-linking 
between collagen and elastin fibers [40]. Li and coworkers [41] 
reported that there are at least 27 types of collagens with distinct 
domains and more than 20 proteins with collagen-like domains, 
although the majority can be classified as type I collagen in fish 
muscle. Species-specific differences in the prevalence of gaping are 
associated with seemingly small differences in muscle components. 
However differences in gaping between species appear to correlate 
best to inherent differences in collagen fiber dynamics. For instance, 
cod (Gadus morhua) are susceptible to gaping and generally have larger 
collagen fibers and less dense collagen networks in the myocommata 
than do wolfish (Anarhichas lupus) which are resistant to gaping [42]. 
In harvest-size Atlantic salmon, the non-reducible cross-links between 
elastin and collagen fibers represent only 1-3% of the total cross-linkages 
observed between connective tissue fibers [41]. Concerning potential 
mechanisms, each Hydroxylysyl Pyridinoline (PYD) crosslink connects 
three collagen molecules. Although an association between PYD and 
gaping has not been established, diet may influence PYD concentration 
and PYD-collagen cross-linkages, thus opening the possibility that 
flesh texture in farmed fish may be favorably altered through simply 
manipulating the fish diet [43].

The notion that manipulating feeding regimes and diet represent 
possible strategies to lessen the prevalence of gaping is supported by 
several observations. First, when starved for two months, Brown trout 
(Salmo trutta) had more connective tissue and thinner muscle fibers 

A B CA B CA B C

Figure 3: Digital image processing (fillet with gaping). A: Example of one of 
the original RGB images of salmon fillet (fragment). B: Segmentation of 
myosepta (black area on the image) (automated image analysis). C: 
Segmentation of myosepta and gaps (black area on the image) (automated 
image analysis).
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compared to their counterparts in the control group [44]. However the 
myosepta width was not affected by starvation and this resulted in an 
increased connective tissue–muscle tissue ratio, and hence in a higher 
muscle collagen content in the starved group [44]. Feeding a high-fat 
diet to Atlantic salmon resulted in carcasses containing more lipid than 
fish fed the medium-fat diet corresponding with 17% larger visible 
fat deposits on transversal carcass sections and 10% wider myosepta 
stripes on the fillets [45]. Similarly, feeding a restricted diet can lead to 
a decrease in gaping [46].

The potential impact of diet on gaping prevalence is especially 
relevant given the recent industry trend to utilize alternatives to fish 
meal as a protein source in salmon feeds. Vegetable-based alternatives 
currently in use have proven to adversely impact gut health and 
physiology although the overall effect of such diets upon the final protein 
composition of the fillet and therefore fillet quality remains to be fully 
investigated. One such study looked at the long term effects of feeding 
high-energy, low fish-meal feeds on growth and flesh characteristics, 
including gaping, using subjective scales and the authors found no 
significant difference between feed treatments [47]. Jessen et al. reared 
two groups of Rainbow trout on a more traditional diet of marine oils 
and proteins or a diet based exclusively on vegetable products, both of 
which had 42% protein and 26% fat. Analyzing the muscle using 2D 
proteomics, they found differences in 39 proteins including a number 
of proteases and proteins associated with protein and lipid metabolism 
and lipid transport. The authors concluded that while firmness was 
increased on the vegetable diet, proteins associated with flakiness and 
juiciness were also affected. 

The application of microarray analysis to examine gene expression 
profiles of muscle within soft and firm Atlantic salmon [48] revealed 
a positive correlation between muscle firmness and genes that encode 
proteasome components, mitochondrial proteins, coordinate stress 
responses and regulate lipid metabolism. These results further suggested 
relationships between sugar metabolism and myofiber proteins and 
revealed several candidate marker genes although the function of these 
novel targets is currently unknown. Unfortunately, the Fish-Specific 
Whole Genome Duplication, an event that occurred in the evolution 
of bony fishes (teleosts) about 350 million years ago, complicates the 
interpretation of such data for fish [49]. Duplicated genes include 
those with basic functions like cell communication, regulation of 
physiological processes, the extracellular matrix and pattern binding, 
and there is also neo-functionalization or paralogs of other genes. 
While such genomic duplication forms the basis for the wide diversity 
exhibited by fishes, it makes the direct comparison to other vertebrate 
genes and interpretation of their functions more complex. The fishes 
have gene loss and enriched signaling as well as asymmetric duplication 
of developmental and behavioral genes compared to mammals 
[49]. Although the Atlantic salmon genome is being mapped [50], 
interpretation of molecular results will continue to be a challenge until 
the fish genome is better understood.

Slaughter welfare and storage

Transport methods, the method of slaughter and post-harvest 
handling all affect flesh quality, much like traditional farm animal 
production. Pre-slaughter stress and activity in fish shorten pre-rigor 
time, increasing the possibility of damage to the flesh during 
processing [51]. An expected increase on rigor flow was indeed 
observed in rainbow trout in response to pre-harvest crowding and 
pumping [52], however there were no significant effects of these 
stressors on fillet gaping [52].

Nonetheless, increased pre-harvest muscle activity has been 

associated with external damage and carcass devaluation [51], earlier 
onset of rigor mortis [53], softer texture [54,55], and gaping [53]. 
Furthermore fish stunned at the cage site had significantly lower 
gaping scores than fish stunned after pumping or live chilling while no 
significant difference was detected between pumped and live chilled 
fish [56]. Empirical evidence suggests that the timing of onset of rigor 
is influenced by stress or muscular activity as post-mortem electrical 
muscle stimulation induced rigor at 2-4 h while stressed salmon 
entered rigor slightly later at 4-24 h and unstressed fish exhibited the 
latest onset at 12-36 h post-mortem [18]. Stressed fish had higher 
gaping scores and softer flesh than their counterparts, indicating that 
factors other than stress and rigor can activate the enzymatic responses 
necessary for softening flesh. 

While an increase in fillet gaping due to crowding stress has been 
documented in Atlantic salmon [18], there is not a consensus on this 
point [57]. Contradictory results could be explained by differences in 
pre-harvest conditions between studies, e.g. different durations of 
crowding and pumping or the use of different harvesting equipment. 
Such differences would be expected to be associated with differences 
in the magnitude of stress experienced by fish across studies. 

It is well established that rough handling of the fish carcass can 
result in physical damage that leads to severe gaping of the fillets 
[19,27]. Anecdotal information from the industry suggests that the 
necessary forcible straightening of fish carcasses that were in a bent 
position following the onset of rigor, causes further disruptions in 
muscle tissue [27].

Finally, texture and gaping in salmonids are further influenced by 
the methods of storage as thawed fillets gape more than fillets that are 
stored on ice [52,58,59]. Furthermore, time that a fillet is stored on ice is 
positively correlated with the incidence of gaping in salmon [33,60]. As 
such, even if fish farm husbandry and fish welfare are excellent during 
the lifetime of the salmon, peri-mortem and post-mortem practices can 
clearly impact product quality and thus the producer’s “bottom line”. 
Being able to determine which factors and what points in the supply 
chain impact product quality is a critical necessity.

Mapping gaping in the salmon industry

The estimation of gaping is typically done by visually grading fillets 
or fillet slices, either by counting gaps according to the “Andersen scale” 
from 0 to 5 [60], by evaluating the area covered by gaps [54], or by 
a sliding scale [61]. These subjective gaping analyses rely on expert 
opinion confounding the comparison of results across trials conducted 
by different specialists. Therefore, the use of several trained evaluators 
is recommended. In addition to the need for specialized personnel, 
current approaches for evaluating gaping are labour intensive and 
subjective in nature so the development of objective methods would 
represent a significant advance. 

Nonetheless, subjective approaches have proven useful for 
detecting differences in the prevalence of gaping across the industry. 
In a large industrial trial (n=1953 salmon) carried out in Norway, 
different degrees of gaping in fillets was observed between processing 
plants [60]. While severe gaping was observed in less than 3% of fillets 
processed in one plant, a striking 22-25% of fillets exhibited multiple 
slits in the muscle at two other factories tested. In one of these factories, 
economic loss due to gaping was calculated to be 5-10% [60]. 

Importantly, some decrease in the degree of gaping has been 
achieved through the application of standardized protocols for harvest 
and storage. For example in one study conducted during 2010, market-
size farmed salmon (n=1181) were harvested with 65% of fish in the 
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study exhibiting no gaping in fillets while less than 5% of fish in the 
study were downgraded [62]. These results illustrate that a large 
variation in the incidence of gaping exists across the industry. Finding 
the underlying causes for such large variation in gaping across the 
supply chain is both a scientific and industrial challenge. 

Given the important of monitoring the prevalence of gaping in 
harvested salmon and the limitations inherent in current subjective 
methods, considerable effort has been made to develop efficient, 
objective measures of gaping. Automated Image Analysis (IA) is one 
such modern and efficient method for monitoring quality in fish 
products [63]. The IA approach measures gaping by imaging the 
carcass and distinguishing between the visibly distinct bands of white 
myosepta that form along thicker bands of the muscle fiber and the 
darker invaginations that appear corresponding to muscle gaping in 
salmon. IA permits objective segmentation of different parts of the 
fish carcass including white and red muscle, myosepta, dorsal fat 
deposit, and horizontal and vertical septa. This in turn facilitates 
analysis of the geometrical properties of these parts and their relative 
ratios and thus represents a very powerful tool to measure the degree of 
gaping on a carcass. While IA is now widely used for objective measures 
of quality traits in salmonids such as colour [64,65], fat content [66] 
and shape [65] there is no simple and efficient instrumental method 
for measuring gaping that could be applied in an automated fashion 
in a setting such as processing plants [25]. Given this significant 
limitation in objective approaches, there is great interest in developing 
automated IA protocols. In this regard, a semi-automatic method has 
been developed to analyze gaping in salmon fillets using a manually set 
threshold for each individual fillet image [67].

We have likewise further developed an automated IA method for 
gaping detection and quantification in smoked salmon slices [24]. The 
results obtained by our automatic image analysis strongly correlated 
with manual quantification of gaps (r=0.83, p-value <0.05). The 
automatic image analysis method can easily be extended to also include 
morphological parameters such as shape, red and white muscle area, 
and myocommata and myotome area. Our analysis demonstrated that 
gaps are strongly associated with “white” or fast-twitch muscle, and not 
“red” or slow muscle tissue. This observation suggests that decreases in 
the myotome-connective tissue ratio might make the fish carcass more 
susceptible to damages due to rigor tensions. Moreover, these results 
demonstrate the potential for industry-level quantification of fish slice/
fillet characteristics associated with gaping. Importantly, this procedure 
holds promise as a tool to allow further investigation of the gaping 
phenomenon itself.

Conclusions 
Gaping in fish muscle causes downgrading and restrictive use of 

the product resulting in lower value applications post-harvest. Gaping 
is somewhat seasonal, and is associated with peri-mortem and post-
mortem factors such as temperature, muscle pH, stress, and crowding, 
among other factors. The association between the muscle fibers and the 
connective tissue, especially respective to collagen dynamics, is a key 
element in gaping. Growth rates, muscle fiber diameters, ratios between 
connective tissue and muscle have all been implicated as influencing 
factors. Attempts to deduce which genes are associated with gaping or 
muscle firmness have demonstrated a potential role for vegetable diets 
to influence these attributes. Interpretation of molecular data from fish 
is more complex than in other vertebrates due to the evolutionary Fish 
Specific Genome Duplication. Standardization of slaughter procedures 
and other methodologies to assess and quantify gaping on an industrial 
scale will permit identification of steps in the production chain that are 

critical for maintaining high quality, farm-fresh salmon all the way to 
the consumer.
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