Editorial Open Access

Cardiovascular Disease: Multifaceted Risks, Integrated Solutions

Dr. Isabelle Dupont *

Dept. of Cardiology, Sorbonne University, Paris, France

*Corresponding Author: Dr. Isabelle Dupont, Dept. of Cardiology, Sorbonne University, Paris, France, E-mail: isabelle.dupont@sorbonne.fr

Received: 02-May-2025, Manuscript No. jowt-25-173920; Editor assigned: 05-May-2025, PreQC No. jowt-25-173920(PQ); Reviewed: 19-May-2025, QC No.

jowt-25-173920; Revised: 23-May-2025, Manuscript No. jowt-25-173920(R); Published: 30-May-2025, DOI: DOI: 10.4172/2165-7904.1000806

Citation: DID (2025) Cardiovascular Disease: Multifaceted Risks, Integrated Solutions. jowt 15: 806.

Copyright: © 2025 Dr. Isabelle Dupont This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Cardiovascular diseases pose a growing global burden, driven by diverse modifiable risk factors. These include metabolic imbalances like non-optimal blood pressure, glucose, and cholesterol, as well as lifestyle choices such as e-cigarette use, obesity, and inadequate sleep. Environmental factors like air pollution and psychosocial elements like chronic stress also significantly contribute. Emerging concerns include the cardiovascular sequelae of Long COVID. Addressing these challenges requires a multifaceted approach, integrating public health initiatives, personalized risk management, and the innovative application of precision medicine to mitigate widespread cardiovascular morbidity and mortality.

Keywords

Cardiovascular Disease; Risk Factors; Global Burden; Public Health; Precision Medicine; Obesity; Air Pollution; Sleep Disorders; Psychosocial Stress; Long COVID

Introduction

This systematic analysis from the Global Burden of Disease Study 2019 reveals the pervasive and increasing burden of cardiovascular diseases globally. It details the trends in incidence, prevalence, mortality, and disability-adjusted life-years, highlighting the regions most affected and the specific types of cardiovascular conditions driving these trends. The findings underscore the critical need for global health initiatives to address the escalating impact of heart disease worldwide[1].

This editorial discusses the evolving understanding of optimal cardiovascular disease risk factor values. It emphasizes that traditional thresholds for blood pressure, cholesterol, and glucose may need reevaluation as new evidence emerges, suggesting that even values previously considered 'normal' could still contribute to long-term cardiovascular risk. The piece encourages a more aggressive and personalized approach to risk factor management to truly prevent heart disease[2].

This review summarizes the current evidence on the impact of electronic cigarettes on the cardiovascular system. It details how various components of e-cigarettes, including nicotine, flavorings, and ultrafine particles, can acutely and chronically affect heart rate, blood pressure, endothelial function, and oxidative stress. The article stresses the importance of recognizing e-cigarettes as a potential cardiovascular risk and the need for public health strategies to mitigate their widespread use[3].

This scientific statement from the American Heart Association comprehensively reviews the complex relationship between obesity and cardiovascular disease. It elucidates the mechanisms by which excess adiposity contributes to various cardiovascular conditions, including hypertension, dyslipidemia, type 2 diabetes, and heart failure. The statement provides guidance on risk assessment, prevention, and management strategies, emphasizing weight loss

and lifestyle modifications as crucial interventions[4].

This State-of-the-Art Review delves into the significant impact of air pollution on cardiovascular health. It outlines the biological mechanisms linking exposure to fine particulate matter and gaseous pollutants with increased risks of myocardial infarction, stroke, heart failure, and arrhythmias. The article advocates for stronger environmental regulations and personalized approaches to minimize exposure, acknowledging air pollution as a major, modifiable cardiovascular risk factor[5].

This American Heart Association Scientific Statement explores the intricate relationship between sleep and cardiovascular disease. It highlights how various sleep disorders, including insomnia, sleep apnea, and insufficient sleep duration, can significantly increase the risk for hypertension, coronary artery disease, stroke, and metabolic syndrome. The statement emphasizes that adequate, quality sleep is a fundamental component of cardiovascular health, providing recommendations for screening and managing sleep disturbances[6].

This systematic analysis from the Global Burden of Disease Study 2021 quantifies the global burden attributable to non-optimal levels of blood pressure, glucose, and cholesterol. It demonstrates how these metabolic risk factors contribute significantly to cardiovascular disease morbidity and mortality worldwide, outlining trends and geographical disparities. The findings reinforce the urgent need for widespread public health interventions and individual-level strategies to control these modifiable risks[7].

This State-of-the-Art Review explores the emerging field of precision medicine in cardiovascular disease, focusing on how individualized approaches can optimize prevention and treatment strategies. It discusses the integration of genomics, proteomics, metabolomics, and advanced imaging to tailor interventions based on an individual's unique biological profile. The review highlights the potential to move beyond 'one-size-fits-all' treatments towards more effective, personalized care to mitigate cardiovascular risks[8].

This American Heart Association Scientific Statement addresses the critical link between psychosocial stress and cardiovascular disease. It consolidates evidence on how chronic stress, depression, anxiety, and social isolation contribute to increased risk of heart attacks, strokes, and overall cardiovascular mortality through both behavioral and physiological pathways. The statement advocates for integrating psychosocial risk assessment and management into routine clinical care and public health initiatives[9].

This narrative review focuses on the persistent cardiovascular risks associated with 'Long COVID', particularly highlighting the

roles of inflammation and immunothrombosis. It details how persistent viral components, exaggerated immune responses, and microvascular dysfunction contribute to a range of post-acute sequelae including myocarditis, arrhythmias, and increased thrombotic events. The article underscores the importance of long-term monitoring and targeted interventions for cardiovascular complications following SARS-CoV-2 infection[10].

Description

This systematic analysis from the Global Burden of Disease Study 2019 reveals the pervasive and increasing burden of cardiovascular diseases globally. It details the trends in incidence, prevalence, mortality, and disability-adjusted life-years, highlighting the regions most affected and the specific types of cardiovascular conditions driving these trends. The findings underscore the critical need for global health initiatives to address the escalating impact of heart disease worldwide[1].

This systematic analysis from the Global Burden of Disease Study 2021 quantifies the global burden attributable to non-optimal levels of blood pressure, glucose, and cholesterol. It demonstrates how these metabolic risk factors contribute significantly to cardiovascular disease morbidity and mortality worldwide, outlining trends and geographical disparities. The findings reinforce the urgent need for widespread public health interventions and individual-level strategies to control these modifiable risks[7].

This editorial discusses the evolving understanding of optimal cardiovascular disease risk factor values. It emphasizes that traditional thresholds for blood pressure, cholesterol, and glucose may need reevaluation as new evidence emerges, suggesting that even values previously considered 'normal' could still contribute to long-term cardiovascular risk. The piece encourages a more aggressive and personalized approach to risk factor management to truly prevent heart disease[2].

This scientific statement from the American Heart Association comprehensively reviews the complex relationship between obesity and cardiovascular disease. It elucidates the mechanisms by which excess adiposity contributes to various cardiovascular conditions, including hypertension, dyslipidemia, type 2 diabetes, and heart failure. The statement provides guidance on risk assessment, prevention, and management strategies, emphasizing weight loss and lifestyle modifications as crucial interventions[4].

This review summarizes the current evidence on the impact of electronic cigarettes on the cardiovascular system. It details how

various components of e-cigarettes, including nicotine, flavorings, and ultrafine particles, can acutely and chronically affect heart rate, blood pressure, endothelial function, and oxidative stress. The article stresses the importance of recognizing e-cigarettes as a potential cardiovascular risk and the need for public health strategies to mitigate their widespread use[3].

This State-of-the-Art Review delves into the significant impact of air pollution on cardiovascular health. It outlines the biological mechanisms linking exposure to fine particulate matter and gaseous pollutants with increased risks of myocardial infarction, stroke, heart failure, and arrhythmias. The article advocates for stronger environmental regulations and personalized approaches to minimize exposure, acknowledging air pollution as a major, modifiable cardiovascular risk factor[5].

This American Heart Association Scientific Statement explores the intricate relationship between sleep and cardiovascular disease. It highlights how various sleep disorders, including insomnia, sleep apnea, and insufficient sleep duration, can significantly increase the risk for hypertension, coronary artery disease, stroke, and metabolic syndrome. The statement emphasizes that adequate, quality sleep is a fundamental component of cardiovascular health, providing recommendations for screening and managing sleep disturbances[6].

This American Heart Association Scientific Statement addresses the critical link between psychosocial stress and cardiovascular disease. It consolidates evidence on how chronic stress, depression, anxiety, and social isolation contribute to increased risk of heart attacks, strokes, and overall cardiovascular mortality through both behavioral and physiological pathways. The statement advocates for integrating psychosocial risk assessment and management into routine clinical care and public health initiatives[9].

This State-of-the-Art Review explores the emerging field of precision medicine in cardiovascular disease, focusing on how individualized approaches can optimize prevention and treatment strategies. It discusses the integration of genomics, proteomics, metabolomics, and advanced imaging to tailor interventions based on an individual's unique biological profile. The review highlights the potential to move beyond 'one-size-fits-all' treatments towards more effective, personalized care to mitigate cardiovascular risks[8].

This narrative review focuses on the persistent cardiovascular risks associated with 'Long COVID', particularly highlighting the roles of inflammation and immunothrombosis. It details how persistent viral components, exaggerated immune responses, and microvascular dysfunction contribute to a range of post-acute seque-

lae including myocarditis, arrhythmias, and increased thrombotic events. The article underscores the importance of long-term monitoring and targeted interventions for cardiovascular complications following SARS-CoV-2 infection[10].

Conclusion

Cardiovascular diseases (CVD) represent a pervasive and increasing global health burden, with systematic analyses revealing escalating trends in incidence, prevalence, mortality, and disabilityadjusted life-years across various regions [1, 7]. Key metabolic risk factors like non-optimal blood pressure, glucose, and cholesterol significantly contribute to this global morbidity and mortality, necessitating widespread public health interventions and individual strategies for control. The understanding of optimal risk factor values is evolving, with evidence suggesting that even traditionally 'normal' levels may pose long-term risks, advocating for more aggressive and personalized management approaches [2]. Beyond metabolic factors, lifestyle and environmental elements are crucial. Electronic cigarettes are identified as a potential cardiovascular risk due to components affecting heart rate, blood pressure, and endothelial function, underscoring the need for mitigation strategies [3]. Obesity is a significant contributor to CVD, including hypertension and heart failure, emphasizing weight loss and lifestyle modifications as key interventions [4]. Air pollution is also a major modifiable risk, linked to increased risks of myocardial infarction and stroke, calling for stronger environmental regulations [5]. Moreover, sleep disorders and psychosocial stress, encompassing chronic stress, depression, and social isolation, are directly linked to elevated cardiovascular mortality and morbidity, highlighting the importance of integrated assessment and management in clinical care [6, 9]. An emerging concern is 'Long COVID', which presents persistent cardiovascular risks such as myocarditis and thrombotic events, driven by inflammation and immunothrombosis [10]. Finally, precision medicine offers a promising future for CVD management, leveraging genomics and advanced imaging to tailor individualized prevention and treatment strategies beyond 'one-size-fits-all' approaches [8]. Addressing this complex landscape requires comprehensive, multi-faceted global and personalized interventions.

References

1. Gregory AR, George AM, Valentin F, Valery LF, Hiroko M et al. (2021) Global, regional, and national burdens of cardio-

- vascular diseases from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Glob Health 9:e1259-e1299.
- Cindy MR, Gurbir G, Thomas SP, Vincent WVJ, Oscar HF et al. (2020) Cardiovascular disease risk factors: a new definition of optimal values? Eur Heart J 41:1969-1971.
- 3. Dharma NB, Stanton AG, Tammy L, Rachel G, Wendy M et al. (2019) Impact of E-Cigarettes on the Cardiovascular System: A Review of the Evidence. Circulation 139:2019-2027.
- 4. Tiffany MP, Yvonne B, Sanjiv SK, Paula P, Tiffany SP et al. (2021) Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 143:e984-e1011.
- Sanjay R, Sadeer GA, Robert DB, Dinesh R, Erin RM et al. (2021) Impact of Air Pollution on Cardiovascular Health: JACC State-of-the-Art Review. J Am Coll Cardiol 77:1876-1896.
- 6. James EG, David AC, Manasi P, Mark SP, Paul EP et al. (2022) Sleep and Cardiovascular Disease: An Amer-

- ican Heart Association Scientific Statement. Circulation 145:e791-e806.
- Gregory AR, George AM, Valentin F, Valery LF, Hiroko M et al. (2024) The worldwide burden of non-optimal blood pressure, glucose, and cholesterol: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403:635-659.
- Brad AM, Sadeer GA, Sara AO, Valentin F, Mandeep RG et al. (2022) Precision Medicine for Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 79:1195-1210.
- David SK, Elizabeth W, Melissa B, Joel ED, Anna TG et al. (2022) Psychosocial Stress and Cardiovascular Disease: The Need for an Integrated Clinical and Public Health Agenda: A Scientific Statement From the American Heart Association. Circulation 146:e269-e283.
- Armen N, Gerardo AL, Jennifer GL, Alejandro HC, Sam W et al. (2023) Long COVID and Cardiovascular Disease: The Role of Inflammation and Immunothrombosis. Circ Res 133:16-36.