Commentary Open Access

Catabolism: Cellular Health, Disease, and Therapy

Shalini Mehra*

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India

*Corresponding Author: Shalini Mehra, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India, E-mail: s.mehra@niper.edu.in

Received: 01-May-2025, Manuscript No. JMPOPR-25-172934; Editor assigned: 05-May-2025, PreQC No. JMPOPR-25-172934(PQ); Reviewed: 19-May-2025, QC No. JMPOPR-25-172934; Revised: 22-May-2025, Manuscript No. JMPOPR-25-172934(R); Published: 29-May-2025, DOI: 10.4172/2329-9053.1000284 Citation: Mehra S (2025) Catabolism: Cellular Health, Disease, and Therapy. J Mol Pharm Org Process Res 13: 284.

Copyright: © 2025 Shalini Mehra This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Catabolic processes are crucial for maintaining cellular energy homeostasis, recycling components, and overall health. Dysregulation in diverse catabolic pathways, including mitochondrial quality control, muscle protein breakdown, lipid and glucose metabolism in cancer and Alzheimer's, amino acid processing in liver disease, neurotransmitter degradation, and heme catabolism, is profoundly linked to various diseases. The ubiquitin-proteasome system and autophagy also play significant, often dysregulated, roles in pathologies like cancer. Understanding these intricate breakdown mechanisms provides essential insights for developing targeted therapeutic strategies aimed at restoring metabolic balance and combating disease progression.

Keywords

Catabolism; Mitochondrial quality control; Neurodegeneration; Cancer metabolism; Muscle protein breakdown; Glucose catabolism; Autophagy; Ubiquitin-proteasome system; Heme metabolism; Therapeutic targets

Introduction

Cellular catabolism, the breakdown of complex molecules into simpler ones, is a fundamental biological process essential for energy production, nutrient recycling, and maintaining cellular homeostasis. Its proper regulation is critical, as dysfunctions in these pathways are implicated in a wide array of human diseases, from neurodegeneration and metabolic disorders to various cancers. Understanding the intricate mechanisms governing catabolic processes offers profound insights into disease pathogenesis and reveals promising targets for therapeutic intervention.

Mitochondrial quality control mechanisms, including mi-

tophagy and mitochondrial biogenesis, are crucial for maintaining cellular energy homeostasis and preventing various diseases. When these processes falter, it can lead to impaired catabolism and contribute to conditions like neurodegeneration and metabolic disorders. Understanding how these pathways are regulated offers insight into therapeutic strategies [1].

Muscle protein catabolism, alongside synthesis, determines muscle mass. Nutritional intake, particularly protein, and exercise profoundly influence this balance. Understanding these regulatory mechanisms is vital for preventing muscle loss in aging and disease, emphasizing strategies that favor anabolism over excessive catabolism to maintain functional strength [2].

Cancer cells often reprogram their lipid catabolism and anabolism to support rapid proliferation and adaptation to challenging tumor microenvironments. This altered lipid metabolism, including fatty acid oxidation, provides energy and building blocks. Targeting these specific catabolic pathways presents promising avenues for novel anti-cancer therapies [3].

Altered glucose catabolism is a hallmark of Alzheimer's disease, with reduced brain glucose utilization observed early in the disease progression. This impairment in energy production is closely linked to amyloid-beta pathology, suggesting that metabolic dysfunction plays a critical role in neurodegeneration. Restoring proper glucose catabolic pathways might be a therapeutic target [4].

Autophagy, a fundamental catabolic process, degrades and recycles cellular components to maintain homeostasis and provide energy during stress. In cancer, autophagy's role is complex; it can either promote tumor survival by providing nutrients and clearing damaged organelles or act as a tumor suppressor. Modulating this intricate catabolic pathway holds therapeutic potential [5].

The liver plays a central role in amino acid catabolism, particularly branched-chain amino acids (BCAAs). In various liver diseases, this catabolic process is often disrupted, leading to imbalances that contribute to disease progression and complications. Understanding these alterations in amino acid breakdown offers insights for nutritional and pharmacological interventions [6].

Cancer cells exhibit a unique carbohydrate catabolism, known as the Warburg effect, where they preferentially metabolize glucose via glycolysis even in the presence of oxygen. This metabolic shift supports rapid proliferation by generating biosynthetic precursors. Targeting key enzymes in this altered glucose breakdown pathway is a promising strategy for anti-cancer therapy [7].

Neurotransmitter catabolism, primarily through enzymatic degradation, is essential for maintaining precise signaling in the brain. Dysregulation of these catabolic pathways can lead to altered neurotransmitter levels, contributing to the pathogenesis of various neurodegenerative diseases. Modulating the activity of these degradative enzymes offers a potential therapeutic approach [8].

Heme catabolism is a finely regulated process crucial for maintaining cellular iron homeostasis and preventing oxidative stress from free heme. Dysregulation in its breakdown, leading to accumulation of toxic intermediates or inefficient iron recycling, is implicated in various diseases. Understanding this catabolic pathway offers insights into conditions like porphyrias and iron overload [9].

The ubiquitin-proteasome system (UPS) is a major catabolic pathway responsible for degrading misfolded or unwanted proteins, playing a crucial role in cellular homeostasis. In cancer, the UPS is often dysregulated, allowing tumor cells to evade apoptosis and proliferate. Targeting components of this protein breakdown machinery offers a significant therapeutic strategy [10].

Description

Catabolic processes are fundamental to cellular life, orchestrating the breakdown of complex molecules to generate energy, recycle cellular components, and maintain metabolic balance. Mitochondrial quality control, encompassing mitophagy and mitochondrial biogenesis, exemplifies this by safeguarding cellular energy homeostasis. Impairments in these crucial mechanisms can lead to a cascade of issues, contributing to severe conditions like neurodegeneration and metabolic disorders [1]. Similarly, the delicate balance between muscle protein catabolism and synthesis dictates muscle mass, a balance profoundly influenced by nutritional intake and physical activity. Strategic interventions that favor anabolism over excessive breakdown are vital to combat muscle loss in aging populations and various disease states, ultimately preserving functional strength [2].

In the context of neurodegenerative diseases, disrupted catabolic pathways emerge as significant contributors to pathology. Altered glucose catabolism, characterized by reduced brain glucose utilization, is a recognized hallmark of Alzheimer's disease. This metabolic deficit is intrinsically linked to amyloid-beta pathology, underscoring the critical role of metabolic dysfunction in neurodegeneration, and suggesting that restoring proper glucose breakdown could be a therapeutic avenue [4]. Furthermore, the precise enzymatic degradation of neurotransmitters is indispensable for maintaining healthy brain signaling. Dysregulation within these specific catabolic pathways can lead to aberrant neurotransmitter levels, directly contributing to the development of various neurodegenerative conditions. Modulating these degradative enzymes therefore represents a potential strategy for intervention [8].

Cancer cells frequently exhibit a profound reprogramming of their metabolic machinery, exploiting catabolic pathways to fuel their relentless proliferation and adapt to harsh tumor microenvironments. This includes alterations in lipid catabolism, such as fatty acid oxidation, which provides both energy and essential building blocks for rapid growth. Targeting these specific lipid breakdown pathways offers promising avenues for novel anti-cancer therapies [3]. A related phenomenon in cancer is the distinctive carbohydrate catabolism known as the Warburg effect, where glucose is preferentially processed via glycolysis even when oxygen is abundant. This metabolic shift supports rapid tumor growth by generating biosynthetic precursors, making key enzymes in this altered glucose breakdown pathway attractive targets for anti-cancer treatment [7]. Autophagy, a crucial catabolic process for recycling cellular components, presents a complex duality in cancer, sometimes promoting tumor survival by supplying nutrients or clearing damaged organelles, and at other times acting as a tumor suppressor. The ability to modulate this intricate catabolic pathway offers diverse therapeutic potential [5]. Additionally, the ubiquitin-proteasome system (UPS), a major pathway for degrading misfolded or unwanted proteins, is often dysregulated in cancer, allowing malignant cells to evade apoptosis and proliferate unchecked. Targeting components of this protein breakdown machinery represents a significant therapeutic strategy [10].

Beyond systemic diseases, localized catabolic dysfunctions also have profound impacts. The liver, for instance, is central to amino acid catabolism, particularly for branched-chain amino acids (BCAAs). In liver diseases, disturbances in this catabolic process lead to metabolic imbalances that exacerbate disease progression and complications. Understanding these alterations in amino acid breakdown provides critical insights for developing targeted nutritional and pharmacological interventions [6]. Similarly, heme catabolism is a precisely regulated process vital for maintaining cellular iron homeostasis and mitigating oxidative stress caused by free heme. Impaired breakdown can result in the accumulation of toxic intermediates or inefficient iron recycling, implicated in diseases like porphyrias and iron overload [9].

Collectively, these examples highlight the pervasive influence of catabolic processes on human health. From the maintenance of mitochondrial function and muscle mass to the complexities of cancer metabolism and neurodegeneration, the regulated breakdown of molecules is paramount. Therapeutic strategies increasingly focus on rebalancing these pathways, whether through enhancing mitochondrial quality control, modulating nutrient breakdown in cancer, or fine-tuning neurotransmitter degradation. A deeper understanding of these diverse catabolic mechanisms continues to unlock new opportunities for preventing and treating a wide spectrum of human ailments.

Conclusion

Catabolism, the breakdown of complex molecules, is fundamental to cellular health and disease. Mitochondrial quality control, involving processes like mitophagy, maintains energy homeostasis, and its disruption is implicated in neurodegeneration and metabolic disorders. Muscle mass is critically regulated by the balance between protein catabolism and synthesis, influenced significantly by nutrition and exercise, highlighting the importance of strategies to prevent muscle loss.

Cancer cells demonstrate altered metabolic profiles, reprogramming both lipid and carbohydrate catabolism to support rapid

growth and survival. Specific pathways like fatty acid oxidation and the Warburg effect, where glucose is preferentially metabolized via glycolysis, represent promising targets for anti-cancer therapies. Autophagy, another vital catabolic process, exhibits a complex role in cancer, sometimes promoting tumor survival and at other times acting as a suppressor, offering diverse therapeutic modulation opportunities.

Beyond cancer, catabolic dysregulation contributes to other serious conditions. Altered glucose catabolism, specifically reduced brain glucose utilization, is a hallmark of Alzheimer's disease, linking metabolic dysfunction to neurodegeneration. The liver's crucial role in amino acid catabolism, particularly branched-chain amino acids, means its disruption in liver diseases can worsen progression. Furthermore, precise neurotransmitter catabolism is essential for brain signaling, and its impairment is linked to various neurodegenerative diseases. Heme catabolism maintains iron homeostasis, and its dysregulation can lead to conditions like porphyrias. Finally, the ubiquitin-proteasome system, responsible for degrading unwanted proteins, is often dysregulated in cancer, presenting a key therapeutic avenue. Collectively, these catabolic pathways are vital for cellular function, and their dysregulation underlies a broad spectrum of human diseases, offering numerous targets for therapeutic intervention.

References

- Evandro F F, Mark P J V P, Morten S K, Yan L, Debashish D et al. (2020) Mitochondrial quality control in metabolic health and disease. Nat Commun 11:4208
- Stuart M P, Daniel R M, Andrew M H, Luc J C V L, Kevin D T et al. (2022) Regulation of muscle protein synthesis and breakdown: effects of nutrition and exercise. Nat Rev Endocrinol 18:373-388
- Tong W, Shanshan L, Mengxi Z, Yuting W, Ruian L et al. (2020) Lipid metabolism in cancer: new opportunities for therapeutic intervention. Nat Rev Clin Oncol 17:541-555
- Rik O, Melissa E M, John C M, Clifford R J J, William E K et al. (2021) Brain glucose metabolism in Alzheimer's disease: a focus on the link with cerebral amyloid-β pathology. Nat Rev Neurosci 22:63-78
- Xiaoli L, Yuhang T, Xiaoying Z, Jingting Z, Yan L et al. (2021) Autophagy in cancer: a new strategy for targeted therapy. Cell Death Discov 7:213

- Akifumi H, Takashi T, Kouki I, Ryo K, Tsubasa T et al. (2022) Branched-chain amino acid metabolism in liver disease. Int J Mol Sci 23:15715
- Shuai W, Hongting J, Xiaobin Z, Yanbin W, Minjie S et al. (2021) Glycolysis and Warburg effect in cancer metabolism. Oncogenesis 10:1
- 8. Krystian R, Dominika W, Maciej S, Joanna S M, Katarzyna K et al. (2023) Enzymatic degradation of neurotransmitters in the brain: Implications for neurodegenerative diseases. Int

- J Mol Sci 24:1200
- Alison S, David M B H, Richard M E P, John A T, Stephen A W et al. (2020) Heme metabolism in health and disease: The good, the bad, and the ugly. Biochim Biophys Acta Gen Subj 1864:129653
- 10. Cheng J, Qi M, Jun C, Dongdong Z, Yangyang T et al. (2020) Targeting the ubiquitin-proteasome system in cancer: a therapeutic update. Cell Death Dis 11:631