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Abstract
Despite advances in therapy, heart failure remains a significant disease burden, with poor outcomes, worldwide. 

Reactive Oxygen Species (ROS) damage cardiomyocytes. Endothelial progenitor cells promote the repair of the 
endothelium of arteries damaged by ROS. However, gene expression profiles of Human Aortic Endothelial Cells 
(HAECs), Endothelial Progenitor Cells (HEPCs), and Cardiomyocytes (HCMs) are unclear. In the present study, we 
determined the expression profiles of different genes in HAECs, HEPCs, and HCMs by performing quantitative PCR. 
Results showed that p53 and Cx37 were up-regulated, but VEGF, Cx43, and eNOS were down-regulated in HEPCs. 
Cx40 and eNOS were up-regulated in HAECs. Moreover, we determined the effect of hydrogen peroxide-derived ROS 
on HCMs. Results showed that Cx40, Cx45, VCAM-1, ICAM-1, p53, and p21 were up-regulated, but E-cadherin was 
down-regulated after high concentration of hydrogen peroxide treatment.
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Introduction
Coronary artery disease is a large disease burden in several countries. 

Endothelial dysfunction caused by oxidative stress and inflammation is 
an essential process underlying the progression of heart failure [1-3]. 
Tissues engineering aims to apply the principles of engineering and 
life science in developing biological substitutes that maintain, restore, 
or improve tissues. In clinical, new drugs and vascular bypass have 
improved the quality of life of patients with Cardiovascular Disease 
(CVD) but have not decreased morbidity or mortality [4]. Tateishi-
Yuyama et al. reported that autologous transplantation of bone 
marrow-derived progenitor cells is a potential therapy of angiogenesis 
for patients with limb ischemia [5]. Autologous cell therapies involving 
bone marrow or circulating blood-derived progenitor cells are safe 
and exert beneficial therapeutic effects by inducing angiogenesis/
vasculogenesis in patients with ischemic diseases [6,7]. In addition, 
human embryonic stem cell (hESC)-derived endothelial cells could be 
beneficial for potential applications such as engineering of new blood 
vessels, endothelial cell transplantation into the heart for myocardial 
regeneration, and induction of angiogenesis for treating regional 
ischemia [8]. However, because of ethical issues associated with 
ESCs, peripheral blood-derived epithelial progenitor cells (EPCs) are 
used for cell therapy [9]. EPCs are a potential inexhaustible source of 
functional vascular cells that have important features of mature ECs for 
regenerative medicine. However, it is difficult to define EPCs generated 
from different sources because they lack a unifying phenotype [10]. 
Glaser et al. suggested that different types of EPCs include colony-
forming unit Hill cells, circulating cells, and endothelial colony-
forming cells [11]. Therefore, it is very important to functionally 
characterize EPCs.

Gap junctions form conduits between adjacent cells that 
are composed of connexin subunits; these conduits allow direct 
intercellular communication [12]. Gap junctions also promote 
intercellular communication in the cardiovascular system and are 
essential for normal vascular function [13,14]. Connexins expressed 
in the vascular wall include Cx37, Cx40, Cx43, and Cx45 and those 
expressed by endothelial cells include Cx37 and Cx40 [12,14]. 
However, the role of these connexins in Human Aortic Endothelial 
Cells (HAECs), Human Endothelial Progenitor Cells (HEPCs), and 

Human Cardiomyocytes (HCMs) is unclear. Nitric Oxide (NO) is 
very important for regulating endothelial function. Increasing in NO 
production is either increased by Endothelial Nitric Oxide Synthase 
(eNOS) enzymes [15-17] or reduced by Reactive Oxygen Species (ROS) 
[18]. Ischemic preconditioning causes ROS overproduction in the 
mitochondria under hypoxia [19,20]. However, the effect of hypoxia on 
Cx37, Cx40, Cx43, and Cx45 is unclear. In this study, we characterized 
HAECs, HEPCs, and HCMs. In addition, we examined the effect of 
hypoxia on the expression of the abovementioned connexins in each 
cell model.

Materials and Methods
Cell lines and cell culture

HAECs (PromoCell GmbH, Heidelberg, Germany) were cultured 
in T-25 flasks (Corning Glassworks, Corning, NY, USA) containing 
endothelial cell growth medium MV (PromoCell GmbH) supplemented 
with 0.05 ml/ml fetal calf serum, 0.004 ml/ml endothelial cell growth 
supplement, 10 ng/ml epidermal growth factor, 90 μg/ml heparin, and 1 
μg/ml hydrocortisone at 37°C and in an atmosphere of 5% CO2/95% air.

HEPCs (Amsbio, UK) were cultured in T-25 flasks containing EPC 
growth medium (Cat#Z7030073; Bio Chain Institute Inc., CA, USA) at 
37°C and in an atmosphere of 5% CO2/95% air.

HCMs (PromoCell GmbH) were cultured in T-25 flasks containing 
myocyte growth medium (PromoCell GmbH) supplemented with 0.05 
ml/ml fetal calf serum, 0.5 ng/ml epidermal growth factor, 2 ng/ml 
basic fibroblast growth factor, and 5 µg/ml insulin at 37°C and in an 
atmosphere of 5% CO2/95% air. 
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Culture medium was replaced every 2 days. After reaching 70–80% 
confluency, the cells were trypsinized and were seeded in six-well plastic 
dishes for performing subsequent experiments. Passages 3–6 HAECs, 
3–10 HEPCs, and 3–9 HCMs were used in subsequent experiments.

RNA isolation and quantitative PCR

Total RNA was isolated from the cells by using TRIzol reagent 
(Invitrogen, Thermo Fisher Scientific, CA, and USA). Primer 
sequences and procedure used for quantitative PCR (qPCR) analysis of 
genes encoding vascular endothelial growth factor (VEGF), p53, p21, 
Cx37, Cx40, Cx43, Cx45, eNOS, VE-cadherin, vascular cell adhesion 
molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), 
and β-actin. cDNAs of genes encoding VEGF, p53, p21, Cx37, Cx40, 
Cx43, Cx45, eNOS, VE-cadherin, VCAM-1, ICAM-1, and β-actin 
were synthesized using the following primer sets: 5ʹ-TGC AGA TTA 
TGC GGA TCA AAC C-3ʹ and 5ʹ-TGC ATT CAC ATT TGT TGT 
GCT GTA G-3ʹ for the gene encoding VEGF, 5ʹ-GCC CAA CAA CAC 
CAG CTCC T-3ʹ and 5ʹ-CCT GGG CAT CCT TGA GTT CC-3ʹ for the 
gene encoding p53, 5ʹ-GAG GCC GGG ATG AGT TGG GAG GAG-
3ʹ and 5ʹ-CAG CCG GCG TTT GGA GTG GTA GAA-3ʹ for the gene 
encoding p21, 5ʹ-GTT GCT GGA CCA GGT CCA GG-3ʹ and 5ʹ-GGA 
TGC GCA GGC CAC CAT CT-3ʹ for the gene encoding Cx37, 5ʹ-GTA 
CAC AAG CAC TCG ACC GT -3ʹ and 5ʹ-GCA GGG TGG TCA GGA 
AGA TT-3ʹ for the gene encoding Cx40, 5ʹ-CAA TCA CTT GGC GTG 
ACT TC-3ʹ and 5ʹ-GTT TGG GCA ACC TTG AGT TC-3ʹ for the gene 
encoding Cx43, 5ʹ-GGA GCT TTC TGA CTC GCC TG-3ʹ and 5ʹ-CGG 
CCA TCA TGC TTA GGT TT-3ʹ for the gene encoding Cx45, 5ʹ-CGG 
CAT CAC CAG GAA GAA GA-3ʹ and 5ʹ-CAT GAG CGA GGC GGA 
GAT-3ʹ for the gene encoding eNOS, 5ʹ-CAT GAG CCT CTG CAT 
CTT CC-3ʹ and 5ʹ-ACA GAG CTC CAC TCA CGC TC-3ʹ for the 
gene encoding VE-cadherin, 5ʹ-GAT ACA ACC GTC TTG GTC AGC 
CC-3ʹ and 5ʹ-CAG TTG AAG GAT GCG GGA GTA TAT G-3ʹ for 
the gene encoding VCAM-1, 5ʹ-CGA TGA CCA TCT ACA GCT TTC 

CGG-3ʹ and 5ʹ-GCT GCT ACC ACA GTG ATG ATG ACA A-3ʹ for 
the gene encoding ICAM-1, and 5ʹ-TCC ACC TTC CAG CAG ATG 
TG-3ʹ and 5ʹ-GCATTTGCGGTGGACGAT-3ʹ for the gene encoding 
β-actin. qPCR was performed using Platinum SYBR Green qPCR kit 
(Invitrogen, Thermo Fisher Scientific) in iCycler (Bio-Rad).

Statistical analysis

Data are shown as mean ± SEM. Treatment groups were compared 
using a two-tailed t-test by using a SAS software.

Results and Discussion
Gene profiles of HAECs, HEPCs, and HCMs

We validated the expression of genes encoding Cx37, 40, 43, 
45, eNOS, VEGF, p21, and p53 by performing qPCR (Figures 
1 and 2). EPCs play a critical role in neovascularization and re-
endothelialization after ischemia and endothelial injury, respectively 
[21,22]. Interestingly, we observed that the expression of VEGF was 
decreased in HAECs and HEPCs (Figure 1). Previous studies have 
reported that VEGF is expressed in cardiac myofibroblasts, non-
endothelial cells with the morphological features of fibroblasts in rat 
myofibroblasts isolated from heart infarcts [23,24]. However, limited 
anti-VEGF antibody-based therapeutic approaches are available for 
preventing cellular senescence in patients with CVD because these 
approaches exert different therapeutic effects in animal experiments 
and clinical trials [25]. Therefore, it is important to determine the gene 
expression profiles of HAECs, HEPCs, and HCMs.

Effect of hypoxia on HCMs

Mitochondria play a crucial role in regulating intrinsic pathways of 
apoptosis or programmed cell death [26]. Mitochondria are the major 
source of endogenous ROS in cells because they contain the electron 
transport chain required for oxidative phosphorylation [27,28]. 
However, the effect of hypoxia on HCMs is limited. We used hydrogen 
peroxide (H2O2) to mimic hypoxic condition [29] and determined the 
gene expression profiles of HAECs, HEPCs, and HCMs under hypoxia. 
Our results showed that the expression of genes encoding Cx40, Cx45, 
VCAM-1, ICAM-1, p21, and p53 was upregulated and that of the gene 
encoding E-cadherin was downregulated in cells treated with high 
concentration of H2O2 (200 µM) (Figure 3).

ROS upregulate VCAM-1 expression in endothelial cells [30]; 
however, this was not observed in HCMs. H2O2 increases the secretion 
of ICAM-1 in canine myocytes [31], which is consistent with the results 
of the present study. Long et al. reported that the expression of p21/
WAF-1/CIP-1, a well-characterized target of p53 transactivation, also 
increases under hypoxia. Furthermore, hypoxia-induced rat cardiac 
myocytes to apoptosis via p53 activation [32]. Thus, our results suggest 
that H2O2-derived ROS trigger the apoptosis of HCMs. However, 
further studies should be performed to confirm this hypothesis.

Interestingly, ST2 (suppression of tumor formation) is a receptor 
for the interleukin-33 and critical to coronary artery disease. Marzullo 
et al. suggested that ST2/IL-33 pathway may play a central role in the 
novel mechanism of plaque development and eventually rupture [33].
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Figure 1:  Relative mRNA levels of genes encoding different connexins, 
vascular endothelial growth factor (VEGF), p21, and p53 in human aortic 
endothelial cells (HAECs), human endothelial progenitor cells (HEPCs), and 
human cardiomyocytes (HCMs). All data are presented as mean ± SEM (n=3); 
*p<0.05 and **p<0.01 compared with control.
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Figure 3: Effect of hydrogen peroxide (H2O2) on human cardiomyocytes (HCMs).
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