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Introduction
Malaria is one of the major infectious diseases of the developing

world that continues to spell havoc on mankind. There have been an
estimated 584,000 deaths in 2013 due to malaria infection. Although
the disease is completely curable with the available drugs, the recent
reports on emergence of resistance against the front line drug,
artemisinin combination therapies in Southeast Asia is gravely
worrisome. There is an urgent need to validate new drugs that can be
used to control malaria infection and also novel targets that can be
used in drug discovery programs against malaria.

Protein kinases have been well documented to play critical roles in
almost all important physiological processes of eukaryotes and
prokaryotes. They have been extensively used as drug targets to treat
various human ailments including cancer. Since protein kinases play
indispensable roles in physiological processes inside a cell, studying
their function using conventional gene knock-out approach may not
be straight forward. Moreover, knock-down of protein levels using
various post-transcriptional and post-translational approaches have
their own limitations such as matching the exact timing of the knock-
down in enzyme levels to the functional activity inside the cell, residual
level of enzyme left and side-effects of the agent used for knock-down.

One of the elegant strategies to study the functional roles of human
kinases has been devised by Kevan Shokat’s group called the
“sensitization strategy” or “chemical genetic approach” [1]. The
strategy involves engineering a unique pocket in the active site of a
target kinase at a position called the gate-keeper position. The gate-
keeper residue is adjacent to the ATP binding site and is mostly
constituted by a bulky amino acid residue such as methionine,
isoleucine or leucine. Substitution of the bulky residue in the target
kinase with a smaller residue such as alanine, glycine or serine renders
the enzyme sensitive towards a particular group of inhibitors better
known as Bumped Kinase Inhibitors (BKIs). Few notable studies
utilizing the chemical genetics approach to decipher functional roles of
eukaryotic target kinase include v-Src role in transformation of
NIH3T3 fibroblasts [1], and Cla4 and Cdc28 in controlling cell cycle
progression in Saccharomyces cerevisiae [2,3]. Additionally, the
approach has been extensively used for identification of downstream
targets of many protein kinases. For example, the substrates of JNK
and v-Src were identified using chemical genetics combined with
chemical synthesis of an ATP analog specific for the analog sensitive
kinase [4,5]. A chemical genetic screen was used to identify
downstream substrates of AMPKα2 [6]. Notably, Byron et al used
chemical genetics to demonstrate that active Zap70 plays a critical role
in the proliferative, effector and memory function of T cells [7]. In all
the above studies the gate-keeper position of the target kinase was
constituted by a bulky residue and hence substitution with a smaller
residue rendered the enzyme sensitive towards BKIs, thereby
facilitating identification of the function and substrates. Noteworthy,

the strategy can be used to convert a sensitive kinase into a resistant
one for the BKIs.

The chemical genetics approach has been recently employed to
study the functional roles and substrates of Toxoplasma gondii and
Plasmodium falciparum kinases. T. gondii Calcium Dependent Protein
Kinase 1 (TgCDPK1) has been shown to play an essential role in the
secretion of an apical organelle called microneme, parasite motility,
host cell invasion and egress using the chemical genetics approach [8].
In two independent studies, treatment with different BKIs such as
1NAPP1, 1NAPP2, 1NMPP1 and 3MBPP1 inhibited the invasion of
fibroblast cells by the T. gondii tachyzoites [8,9]. Substitution of glycine
gate-keeper residue with methionine (G128M) conferred remarkable
resistance to the bumped kinase inhibitors. The approach was
subsequently used to identify downstream targets of TgCDPK1 using
different ATP analogs [10].

Chemical genetics approach has also been used to decipher the
functional roles of P. falciparum guanosine 3’,5’-cyclic monophosphate
(cGMP)-dependent protein kinase, PfPKG. McRobert et al
convincingly demonstrated the role of PfPKG in gametogenesis of P.
falciparum by using two different specific inhibitors, compound 1 and
2, that blocked the activity of wild type kinase but not T618Q gate-
keeper mutant [11]. Although the compound 1 and 2 do not share
similar structure as BKIs, they share same mode of action.
Additionally, the same approach was used to show the central role of
PfPKG in the blood stage schizogony. PfPKG has been shown to
control the discharge of apical organelles such as micronemes and
exonemes (12). Blocking the activity of PfPKG using compound 1 or 2
blocked the discharge of PfSUB1 to the parasitophorous vacuole and
hence inhibited proteolytic processing of Merozoite Surface Protein 1
(MSP1) and Serine Repeat Antigen 5 (SERA5) and thereby leading to a
block in egress [12]. Compound 2 treated wild type and the T618Q
mutant parasites have been used to identify the substrates of PfPKG in
the late stage schizonts [13]. A total of 69 parasite proteins were
identified to be the direct or indirect substrates of PfPKG. Some of the
targets of PfPKG identified in this study include proteins implicated in
the motility and invasion of red blood cells by merozoites such as
calcium dependent protein kinase 1 (CDPK1), Myosin A (MyoA), and
Glideosome-associated protein 40 (GAP40). Native CDPK1
phosphorylated at S64 has been shown to specifically localize at the
apical pole of the developing merozoites in mature schizonts or free
merozoites near the apical organelles and was shown to be associated
with a high molecular weight complex [13].

Serine at the gate-keeper position in wild type PfCDPK4 makes the
enzyme susceptible to BKIs. Ojo et al inhibited the kinase activity of
PfCDPK4 with BKI-1 leading to block in exflagellation of male
gametocytes and also subsequent stages of oocysts development and
sporozoite formation [14]. Substitution of serine with methionine at
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the gate-keeper position, S147M, did not affect exflagellation in the
transgenic parasite strain upon treatment with BKIs [15].

PfCDPK1 has been demonstrated to play critical role in egress of
merozoites from mature schizonts using a pharmacological inhibitor,
purfalcamine and conditional over-expression of the junction domain
[16,17]. Interestingly, PfCDPK1 has also been implicated in
microneme secretion and invasion of red blood cells by Plasmodium
merozoites [18]. However, molecular mechanisms involved in these
critical processes of asexual proliferation of the parasite have remained
elusive. Due to lack of genetic validation corroborating PfCDPK1
function in the parasite and the fact that it’s homolog in P. berghei
could be knocked-out without affecting asexual proliferation of the
parasites [19], the indispensability of PfCDPK1 has been challenged.
Chemical genetics should be a valuable tool to address this paradox.
Substituting threonine, a small gatekeeper residue, in wild type
PfCDPK1 with methionine, a bulky residue, should make the enzyme
resistant towards BKIs and may help in validating its function and also
identification of the downstream substrates. It is important to note, the
permeability of BKIs for parasitized RBCs in the asexual stages has not
been evaluated and may become a limiting factor in using chemical
genetics for studying kinases at this stage of the parasite.

In summary, chemical genetics is a valuable tool to study the
functional roles of kinases and its potential have started being tapped
to explore the function of Plasmodium kinases and validate them as
potential drug targets. As evident, PfPKG and PfCDPK4 have been
studied using this approach and are good drug targets for development
of small molecule inhibitors for control of malaria.
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