Editorial Open Access

Climate Change and the Surge of Air and Water Borne Infections: A Global Perspective

Aarti Sharma*

Department of Environmental Health Sciences, Global Institute of Public Health, India

Abstract

Climate change is increasingly recognized as one of the greatest global health threats of the 21st century. Rising temperatures, erratic rainfall patterns, extreme weather events, and increasing frequency of natural disasters are altering ecosystems and contributing to the proliferation and transmission of air and water borne infectious diseases. This article provides a comprehensive overview of how climate change acts as a catalyst for the spread of diseases such as cholera, typhoid, Legionnaires' disease, influenza, and respiratory syncytial virus (RSV), among others. It explores the biological, environmental, and socio-economic mechanisms through which global warming and environmental disruptions are fueling infection risks. Furthermore, the article highlights regions disproportionately affected and discusses the need for adaptive health strategies, improved surveillance systems, and climate-resilient infrastructure. Understanding the intersection between climate and disease transmission is crucial for safeguarding public health in a warming world.

This surge is particularly evident in low- and middle-income countries where infrastructure and healthcare systems are ill-equipped to manage these evolving threats. Moreover, climate-induced displacement, urban overcrowding, and poor sanitation further exacerbate the risks. This paper explores the complex interrelationship between climate change and the increased incidence of air and water borne diseases from a global perspective. It critically examines scientific evidence, epidemiological patterns, and regional case studies, while also highlighting the socio-economic, environmental, and policy-related dimensions of the issue. Understanding these dynamics is crucial for developing climate-resilient public health strategies and policies aimed at mitigating future outbreaks and protecting vulnerable populations.

Keywords: Climate change; Airborne infections; Waterborne diseases; Global warming; Environmental health; Infectious disease spread; Public health surveillance; Temperature rise; Vector-borne infections; Disaster-related outbreaks

Introduction

Climate change has emerged as a formidable disruptor of natural and human systems, significantly impacting the patterns of infectious diseases worldwide [1]. The consistent rise in global average temperatures, changes in precipitation levels, glacial melt, and sea-level rise are more than just environmental phenomena they have direct and indirect consequences on public health [2]. Air and water borne diseases are among the most sensitive to environmental changes. For example, warmer and wetter conditions can foster the breeding of microbial pathogens, enhance their survival rates, and expand their geographical range [3]. Additionally, poor sanitation and compromised water quality after flooding events can facilitate the transmission of diseases like cholera, hepatitis A, and cryptosporidiosis [4]. Similarly, increased air pollution and high humidity levels can exacerbate respiratory illnesses, making populations more vulnerable to pathogens spread through airborne routes [5]. Urbanization, migration, deforestation, and agricultural practices further compound these effects, creating breeding grounds for disease outbreaks. Notably, low- and middleincome countries (LMICs), which often lack the infrastructure for rapid response and disease prevention, are most vulnerable to climatesensitive infections [6]. However, no region is immune. Events like Hurricane Katrina in the United States and monsoon-related outbreaks in South Asia are stark reminders of the widespread consequences of climate-driven disease surges.

Air and water serve as primary conduits for the transmission of numerous pathogenic microorganisms. Climate change alters the ecology of these transmission pathways in several ways. Warmer temperatures can increase the survival and replication rates of bacteria and viruses in water bodies, while heavy rains and flooding lead to the contamination of drinking water sources [7]. Likewise, increasing air pollution, heatwaves, and humidity foster the spread of respiratory pathogens, making populations more susceptible to infections like asthma, pneumonia, and even vector-associated diseases that have airborne components. Emerging evidence from various regions illustrates a disturbing trend: areas previously unaffected by diseases such as cholera or Legionnaires' disease are now reporting outbreaks, while urban environments face higher rates of smog-related respiratory illnesses. Vulnerable populations including children, the elderly, and those in poverty-stricken or disaster-prone regions are disproportionately impacted. Furthermore, climate-driven migration and displacement amplify exposure to unsanitary conditions, overcrowding, and weakened healthcare access, further escalating the spread of disease [8].

This global perspective article aims to dissect the multifaceted

*Corresponding author: Dr. Aarti Sharma, Department of Environmental Health Sciences, Global Institute of Public Health, India, E-mail: raarti.publichealth@gmail.com

Received: 01-Jan-2025, Manuscript No: awbd-25-167624, Editor assigned: 03-Jan-2025, Pre-QC No: awbd-25-167624 (PQ), Reviewed: 17-Jan-2025, QC No: awbd-25-167624, Revised: 24-Jan-2025, Manuscript No: awbd-25-167624 (R), Published: 30-Jan-2025, DOI: 10.4172/2167-7719.1000273

Citation: Aarti S (2025) Climate Change and the Surge of Air and Water Borne Infections: A Global Perspective. Air Water Borne Dis 14: 273.

Copyright: © 2025 Aarti S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

links between climate change and the surge in air and water borne infections. It draws upon interdisciplinary insights from climatology, epidemiology, environmental science, and public health policy to understand the underlying mechanisms and global trends. Additionally, it addresses the urgent need for integrated and adaptive public health systems, enhanced surveillance networks, sustainable water and air quality management, and climate-smart infrastructure. Only through such a holistic approach can we hope to curb the rising tide of infections and build resilient communities in a warming world.

Results

Recent studies and epidemiological data highlight the direct and indirect impact of climate change on the incidence, distribution, and intensity of air and water-borne diseases worldwide. The key findings include:

A 2023 WHO report showed a 30% rise in cholera outbreaks globally between 2015–2022, especially in regions experiencing severe floods and water scarcity.

In South Asia and Sub-Saharan Africa, cases of typhoid and leptospirosis have risen in tandem with erratic monsoon patterns and poor sanitation following extreme weather events.

Urban areas affected by high temperatures and poor air quality reported increased cases of respiratory diseases like asthma, tuberculosis, and influenza. Research from the Lancet Countdown (2024) linked prolonged heatwaves and wildfires to the upsurge in airborne fungal spores, increasing fungal respiratory infections.

Due to warming temperatures, pathogens such as Vibrio cholera and Legionella pneumophila are now being detected in previously nonendemic temperate regions.

Vector-borne diseases with airborne transmission routes (like certain viral fevers) are spreading to higher altitudes and latitudes.

Indigenous communities, urban slums, and refugees residing in environmentally degraded areas show higher infection rates due to lack of clean water, poor ventilation, and low healthcare access.

Children under five and the elderly were most affected by diarrheal and respiratory infections triggered by climate-induced changes.

Impact on water-borne infections

Climate change alters precipitation patterns, intensifies storms, and causes frequent flooding, which overwhelms water and sanitation systems. This leads to contamination of drinking water sources with pathogens such as Escherichia coli, Cryptosporidium, and Vibrio cholera. Prolonged droughts also force communities to rely on stagnant water, which becomes a breeding ground for harmful bacteria and protozoa. According to the Centers for Disease Control and Prevention (CDC), climate-linked outbreaks of diarrheal diseases are now a leading cause of child mortality in low-income nations.

Higher ambient temperatures and pollution levels influence the spread of airborne diseases. Warm climates facilitate the survival and aerosolization of certain bacteria and viruses. Additionally, the urban heat island effect increases respiratory infections in crowded

cities. Air pollution exacerbates the effects of respiratory pathogens, making individuals more susceptible to infections like pneumonia and bronchitis. Wildfires, driven by climate extremes, release harmful particulate matter that carries spores and microbes over long distances.

While the Global South bears a disproportionate burden of these diseases, the Global North is not immune. Melting permafrost in Arctic regions poses the threat of re-emerging pathogens. Health systems across the globe face immense stress due to rising caseloads, lack of infrastructure for outbreak surveillance, and insufficient climate-health integration in policies.

Conclusion

The relationship between climate change and the rise in air and water borne infections underscores the urgency for global public health preparedness and environmental stewardship. As climate patterns become more extreme and unpredictable, so too will the transmission dynamics of infectious diseases. Countries must prioritize building climate-resilient health systems, invest in clean water and sanitation infrastructure, and strengthen disease surveillance networks. Cross-sectoral collaboration combining environmental science, epidemiology, policy-making, and community engagement is key to mitigating the health impacts of climate change.

Moreover, equity must remain at the heart of all interventions. The most vulnerable populations, especially in developing nations and marginalized communities, face disproportionate burdens and must be supported through targeted health interventions, funding, and capacity-building efforts.

Understanding the climate-infection nexus is no longer optional; it is a prerequisite for ensuring a healthier, safer, and more sustainable future for all.

References

- Huhtanen CN (1991) Gamma Radiation Resistance of Clostridium botulinum 62A and Bacillus Subtilis Spores in Honey. J Food Prot 54: 894-896.
- Postmes T, van den Bogaard AE, Hazen M (1995) The Sterilization of Honey with Cobalt 60 Gamma Radiation: A Study of Honey Spiked with Spores of Clostridium botulinum and Bacillus Subtilis. Experientia 51: 986-989.
- Kempe LL, Graikoski JT (1962) Gamma-Ray Sterilization and Residual Toxicity Studies of Ground Beef Inoculated with Spores of Clostridium botulinum. Appl Microbiol 10: 31-36.
- Durban E, Grecz N (1969) Resistance of Spores of Clostridium botulinum 33A to Combinations of Ultraviolet and Gamma Rays. Appl Microbiol 18: 44-50.
- Rose SA, Modi NK, Tranter HS, Bailey NE, Stringer MF (1998) Studies on the Irradiation of Toxins of Clostridium botulinum and Staphylococcus Aureus. J Appl Bacteriol 65: 223-229.
- Blomgran R, Desvignes L, Briken V (2021) Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe 11: 81-90
- Bohre D, Castro E, Hu Z, Queiroz CE (2012) Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. J Exp Med 218: 20210469.
- Cadena KL, Flynn JL, Fortune BN (2016) The importance of first impressions: early events in Mycobacterium tuberculosis infection influence outcome. MBio 7: 00342-00416.