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ABSTRACT 
 
 Progress in medicinal chemistry and in drug design depends on our ability to understand the interactions of drugs with 
their biological targets. Classical QSAR studies describe biological activity in terms of physicochemical properties of substituents in 
certain positions of the drug molecules. The detailed discussion of the present state of the art should enable scientists to further 
develop and improve these powerful new tools. Comparative Molecular Field Analysis (CoMFA) is a mainstream and down-to-
earth 3D QSAR technique in the coverage of drug discovery and development. Even though CoMFA is remarkable for high 
predictive capacity, the intrinsic data-dependent characteristic still makes this methodology certainly be handicapped by noise. It's 
well known that the default settings in CoMFA can bring about predictive QSAR models, in the meanwhile optimized parameters 
was proven to provide more predictive results. Accordingly, so far numerous endeavors have been accomplished to ameliorate the 
CoMFA model’s robustness and predictive accuracy by considering various factors, including molecular conformation and 
alignment, field descriptors and grid spacing. In the present article we are going to discuss the basic approaches of CoMFA  in 
drug design. 
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INTRODUCTION 

Classical QSAR correlates biological activities of drugs 

with p hy s i c o c he m i ca l  properties or indicator variables 

which encode certain structural features [1-5].  In addition to 

lipophilicity,  polarizability,  and  electronic  properties,  

steric  parameters  are  also  frequently  used  to  describe  

the  different  size of substituents. In some cases, indicator 

variables have been attributed to differentiate racemates  

 

 

and active enantiomers [2,3]. However, in general, QSAR 

analyses consider neither the 3D structures of drugs nor 

their chirality. CoMFA describe 3D structure a c t i v i t y  

relationships in a quantitative manner.  For this purpose, a 

set of molecules is first selected which will be included in 

the analysis.  As  a most  important  precondition,  all  

molecules  have  to  interact with the same kind of receptor 
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 (or enzyme, ion channel, transporter)  in the same manner,  

i.e., with identical  binding . A sufficiently large box is 

positioned around the molecules sites in the same relative 

geometry. In the next step, a certain subgroup of molecules 

is selected which constitutes a training set to derive the 

CoMFA model. The residual molecules are considered  to be 

a test  set  which  independently  proves  the validity  of 

the  derived  models . Atomic partial charges are 

calculated and (several) low energy conformations are 

generated. A pharmacophore hypothesis is derived to orient 

the superposition of all individual molecules and to afford 

a rational and consistent alignment. Carbon atom, a 

positively or negatively charged atom, a hydrogen bond 

donor or acceptor, or a lipophilic probe, are used to 

calculate field values in each grid point, i.e., the energy 

values  which  the  probe  would  experience  in the  

correponding position  of the regular 3D lattice . These 

‘fields’ correspond to tables, most often including several 

thousands of columns, which must be correlated with the 

binding affinities or with other biological  activity values. 

PLS analysis is the most appropriate method for this 

purpose. Normally cross-validation is used to check the 

internal predictivity of the derived model. The result of the 

analysis corresponds to a regression equation with 

thousands of coefficients. Most often it is presented as a 

set of contour maps.  These contour maps show favorable 

and unfavorable steric regions around the molecules as 

well as favorable and unfavorable regions for 

electropositive or electronegative substituents in certain 

positions . Predictions for the test set (the compounds not 

included in the analysis) and for other compounds can be 

made, either by a qualitative inspection of these contour 

maps or, in a quantitative manner, by calculating the fields 

of these molecules and by inserting the grid values into 

the PLS model.  Despite the straightforward definition of 

CoMFA, there are a  number  of  serious  problems  and  

possible  pitfalls [6].   Several CoMFA modifications have 

been described which solve or avoid some of these problems 
[7].  In addition, alternatives to CoMFA were developed, 

e.g., comparative molecular similarity indices analysis 

(CoMSIA) [8] and other 3D quantitative similarity  activity 

relationship (QSiAR) methods [9,10]. 

 
 

Fig. 1. The standard CoMFA process.                                                        

 

COMPOUND SELECTION AND SERIES OPTIMIZATION 

One of the major applications of QSAR is to optimize the 

existing leads by structural modifications so as to improve 

their activity and reduce  the side-effects. However there are 

many issues to be taken care of while selecting substituent for 

the modification of compounds; some of the important ones 

are given below: [11, 12] 

 The compounds/substituent selected should be 

convincingly different from the existing ones, so as to 

minimize co linearity among the variables. 

 The chosen compounds/substituent should have the 

properties which behave independent of each other, 

thereby maximizing dissimilarity and orthogonality. 

 The selection should be done in such a manner so as to 

map the substituent (descriptor) space with minimum 

number of compounds. 

 Synthetic accessibility/feasibility of the selected 

compounds should also be taken into consideration. 
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OPTIMIZATION OF 3D-STRUCTURE OF THE MOLECULES 

An important issue in 3D-QSAR is how to generate and 

represent the starting molecular structure for analysis. The 

problem can be resolved both by experimental as well as 

computational techniques [12]. A large number of well 

resolved experimentally determined crystal structures are 

available in databases like Cambridge Structural Database 
[13] and Protein Data Bank [14]. The crystal structures offer the 

advantage that some conformational information about the 

flexible molecule is included. However, molecular modeling 

methods are particularly useful for compounds that have not 

been made or cannot even exists under normal conditions. 

Computationally the 3D-structures can be generated by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

three methods: 

(a) Manually by sketching the structures interactively in a 3D-

computer graphics interface or from an existing 3D-structure 

included in the fragment libraries,  

(b) Numerically by using mathematical techniques like 

distance geometry, quantum or molecular mechanics, and, 

 (c) By automatic methods that are often used for building 

3D-structure databases.  

After the generation of starting 3D-molecular structures, their 

geometries are refined by minimizing their conformational 

energies using theoretical calculation methods. Commonly 

used structure optimization techniques include:  

 

Fig. (2). Decision tree for determining possible combinations of CoMFA settings  



 
Sandip Sen et. al., October-November, 2012, 1(4), 167-175 

 

©SRDE Group, All Rights Reserved.                                                                                      Int. J. Res. Dev. Pharm. L. Sci.                  170 

 

(a) Molecular mechanics methods which usually does not 

explicitly consider the electronic motion, and thus are fast, 

reasonably accurate and can be used for very large 

molecules like enzymes, 

 (b) Quantum mechanics or ab initio methods which takes into 

account the 3D-distribution of electrons around the nuclei, 

and therefore are extremely accurate but time consuming, 

computationally intensive and cannot handle large molecules, 

 (c) Semi-empirical methods which are basically quantum 

mechanical in nature but employs an extensive use of 

approximations as in molecular mechanics. Generally, the 

molecular geometry is optimized by molecular mechanics 

methods, and its atomic charges are calculated mostly by 

semi-empirical methods or less frequently by ab initio 

methods. 

CONFORMATIONAL ANALYSIS OF MOLECULES 

It is a well recognized fact that each compound containing 

one or more single bonds is existing at each moment in many 

different so-called rotamers or conformers. Although small 

molecules may have only a single lowest energy 

conformation but large and flexible molecules do exists in 

multiple conformations at physiological conditions. Therefore, 

it becomes necessary to include various such conformations of 

the molecules in a 3D-QSAR study [12]. Depending upon the 

type of molecules in the study, any of the following 

conformational search methods can be adopted: 

 Systematic search (or grid search)  

 Random search  

 Monte Carlo method  

 Molecular dynamics method  

 Simulated annealing. 

 Distance geometry algorithm  

 Genetic and evolutionary algorithms  

 

DETERMINING BIOACTIVE CONFORMATIONS OF 

MOLECULES 

Bioactive conformation refers to that conformation of the 

molecule when it is bound to the receptor. Intrinsic forces 

between the atoms in the molecule as well as extrinsic forces 

between the molecule and its surrounding environment 

significantly influence the bioactive conformation of the 

molecule. Reliability of any 3D-QSAR methodology depends 

on the determination of bioactive conformations [12, 15]. 

Bioactive conformations of the molecules can be obtained 

both by experimental as well as theoretical techniques 

Experimental methods for establishing bioactive 

Conformations include: 

 X-ray crystallography 

 NMR spectroscopy  

 

ALIGNMENT OF MOLECULES  

One of the most crucial problems in most of the alignment-

based 3D-QSAR methods is that their results are highly 

sensitive to the manner in which the bioactive conformations 

of all the molecules are superimposed over each other [12, 15]. 

In cases, where all the molecules in a data set have a 

common rigid core structure, molecules can be aligned easily 

using least-square fitting procedure. However in case of 

structural heterogeneity in the dataset, alignment of highly 

flexible molecules becomes quite difficult and time 

consuming. Several approaches have been proposed to 

superimpose the molecules as accurately as possible, some of 

which are as follows: 

 Atom overlapping based superimposition 

 Binding sites based superimposition 

 Fields/pseudo fields based superimposition 

 Pharmacophore based superimposition 

 Multiple conformers based superimposition 

 

CALCULATION OF MOLECULAR INTERACTION ENERGY 

FIELDS 

After superimposition, the overlaid set of molecules is 

positioned in the center of a lattice or grid box, to calculate 

interaction energies between the ligands and different probe 

atoms placed at each intersection of the lattice [12, 16]. 

Various aspects that are required to be taken care of while 

calculating the interaction energies in CoMFA methodology 

are as follows: 

 The standard size of the grid spacing is 2 Å. The grid 

spacing is inversely proportional to the rigorousness of 

calculations. As the grid spacing decreases to 1Å or less, 

the calculations becomes more intensive requiring much 

more computing time and disc storage space. The 

reduced grid spacing (0.5 Å) is usually employed while 
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extracting interaction energy fields for a reference 

(most active) compound during molecular superimposition 

based on fields, as described earlier. 

 The typical size of the grid box is 3 - 4 Å larger than 

the union surface of the overlaid molecules. Since the 

electrostatic/Coulombic interactions are long-rang in 

nature, a larger grid box may be needed. Due to 

inherent correlation between electrostatic energies 

among lattice points in close proximity, a similar size 

grid box can be used for steric/van der Waals 

interactions. 

 Many times the position of the grid box considerably 

influences the statistics particularly the number of 

components in the final CoMFA model. Generally, the 

initial models are developed at various locations to spot 

the best grid position. Two approaches have been 

proposed to reduce the instability. The first one suggests 

rotating the set of overlaid molecules in a manner that 

they are not parallel to any of the grid edges. The 

second strategy recommends substituting the field value 

at a lattice point by average of the field values at the 

vertices of a cube centered on the grid point, whose side 

length is two-thirds of the grid spacing. 

 In CoMFA, the interaction energies are calculated using 

probes. The probe may be a small molecule like water, 

or a chemical fragment such as a methyl group. The 

electrostatic energies are calculated with H+ probe, 

whereas a sp3 hybridized carbon atom with an 

effective radius of 1.53 Å and a +1.0 charge is used as 

probe for including the steric energies. Each probe is 

positioned in turn at every intersection point of the 

lattice, and the interaction energies between the probe 

and each of the compounds are calculated using 

different molecular force fields. 

 A force field is a mathematical equation, which using a 

combination of bond lengths, bond angles, dihedral 

angles, interatomic distances along with coordinates and 

other parameters, empirically fit the potential energy 

surface. Major forces encountered in the drug-receptor 

intermolecular interactions include electrostatic/ 

Coulombic, hydrogen bonding, steric/van der Waals 

and hydrophobic. The electrostatic and hydrogen  

bonding interactions are responsible for ligand-receptor 

specificity, whereas hydrophobic interactions generally 

provide the strength for binding. The most commonly 

employed fields in CoMFA are steric and electrostatic, 

which are mainly enthalpic in nature. However, many 

times the entropic effects, in the form of hydrophobic 

interactions, are also included in the CoMFA analysis. 

Creativity of the research and the validity of the 

underlying theory are the major parameters deciding 

the type of field to be generated and included in a 

CoMFA model. 

 In CoMFA, the standard Lennard-Jones function is used 

to model the van der Waals interactions whereas 

electrostatic interactions are determined by the 

Coulomb’s law. The slope of the Lennard-Jones 

potentials is very steep close to the van der Waals 

surface, as a result of which the potential energy at 

lattice points in the proximity of the surface changes 

significantly. This implies that a trivial difference in the 

mutual shift or conformational changes of the compounds 

may result in very large differences in energy values. 

Moreover, the Lennard-Jones and Coulombic potentials 

show singularities (unacceptably large values) at the 

atomic positions. Therefore to avoid all these problems 

in CoMFA, the cut-off values (± 30 kcal/mol) for steric 

and electrostatic energy are defined. 

 

DATA PRETREATMENT AND SCALING 

Before performing the actual chemo metric analysis in 3D-

QSAR, the raw data is usually pretreated to minimize 

redundancy. [12] One of the common reduction methods is 

based on the standard deviation cut-off, in which all the 

energy columns with a low standard deviation are eliminated 

from the data, since they require longer computing time 

without contributing significantly to the results. Similarly 

several variable selection methods are available, which can 

be used to reduce co linearity among the descriptors thereby 

preventing data over-fitting and improving the prediction 

performance of the model. Also, in CoMFA the steric and 

electrostatic values are amended by using cut-offs (± 30 

kcal/mol, as mentioned earlier), depending upon the position 

of the lattice point. Many times after pretreatment, the data 
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 is subjected to scaling which assigns equal weight to all the 

descriptors and places them on a common platform for a 

meaningful statistical analysis. Scaling significantly improves 

the signal to noise ratio and also allows ranking the relative 

importance of individual variables. Different scaling 

techniques are available and can be used effectively in 3D-

QSAR approaches. For example: auto scaling scales the 

variables to zero mean and a unit standard deviation by 

dividing each column with its standard deviation, block-

scaling provides each category of variables with the same 

weight by dividing the initial auto scaling weights of 

descriptors in one class by the square root of the number of 

descriptors in that class (CoMFA standard scaling), and 

block-adjusted scaling which is particularly useful when other 

variables are included along with the energy values in the 

analysis. This scaling gives other variables a comparable 

weight to the total variables. Sometimes the pretreated data 

is subjected to centering by subtracting the column means 

from all the data. This does not change any coefficient values 

or comparative weights of the descriptors, but the number of 

significant components from PLS may be one less than from 

the data without centering. The method is supposed to 

improve the ease of interpretation and numerical stability. 

 

MODEL GENERATION AND VALIDATION 

After pretreatment and scaling of the descriptors (interaction 

energies and other variables, if necessary), they are 

correlated to the biological activities of the molecules, 

assuming a linear relationship between them [12,16,17]. Since 

the number of independent (x) variables in CoMFA is much 

larger than the number of compounds in the data set, the 

traditional linear regression analysis cannot be used to 

perform the fitting process. Therefore to extract a stable and 

best QSAR model from a range of possible solutions, the 

partial least-squares (PLS) technique is used. Other methods 

to model linear relationships include MLR, PCA, and PCR etc. 

However many times the relationship between the dependent 

(y) and independent (x) variables is not linear or it can’t be 

predicted, in such cases non-linear chemo metric methods like 

neural networks are employed; these methods make no 

assumption about the relationship between the variables 

during training and model development. Most of these chemo 

metric techniques for QSAR modeling are discussed in the 

later sections. The most important criterion for judging the 

quality of a QSAR model is its ability to predict accurately 

not only the activities of molecules that form part of training 

set (internal prediction), but also of molecules not included in 

the development of the model (external prediction) [17]. The 

internal predictive capability of the model can be judged 

from cross-validated by techniques like leave-one-out and 

leave-group-out, whereas its external productivity can be 

evaluated by using a separate set of molecules (the test set) 

not included in the model development. To further assess the 

robustness and statistical confidence of the derived models 

Fischer statistics, randomization (y-scrambling) and 

bootstrapping analysis are also performed. All these cross 

validation methods have been explained in the later sections. 

 

DISPLAY OF RESULTS 

CoMFA generates an equation correlating the biological 

activity with the contribution of interaction energy fields at 

every grid point. To allow simple and easy visual 

interpretation, results are generally shown as coefficient (or 

scalar product of coefficients and standard deviation) 

contour plots, depicting important regions in space around 

the molecules where specific structural modifications 

significantly alters the activity [12,18]. Generally two types of 

contours are shown for each interaction energy field: the 

positive and negative contours. The contours for steric fields 

are shown in green (positive contours, more bulk favored) 

and yellow (negative contours, less bulk favored), while the 

electrostatic field contours are displayed in red (positive 

contours, electronegative substituent favored) and blue 

(negative contours, electropositive substituent favored) colors. 

In addition of contour plots, CoMFA also provides two types 

of plots from PLS models: score plots and loading/ weight 

plots. Score plots between biological activity (Yscores) and 

latent variables (X-scores) show relationship between the 

activity and the structures, whereas plots of latent variables 

(X-scores) display the similarity/dissimilarity between the 

molecules, and their clustering propensities. 

 

DRAWBACKS AND LIMITATIONS OF CoMFA 

Despite of offering many advantages over classical QSAR 

and good performance in various practical applications, 
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CoMFA has several pitfalls and imperfections as given below 
[12,18,19]: 

 Too many adjustable parameters like overall 

orientation, lattice placement, step size, probe atom 

type etc. 

 Uncertainty in selection of compounds and variables. 

 Fragmented contour maps with variable selection 

procedures. 

 Hydrophobicity not well-quantified. 

 Cut-off limits used. 

 Low signal to noise ratio due to many useless field 

Variables. 

 Imperfections in potential energy functions. 

 Various practical problems with PLS. 

 Applicable only to in vitro data. 

 

APPLICATION 

Since the time of its origin in 1988, numerous applications of 

the CoMFA method in different fields have been published. 

Several data sets have been investigated; the first being the 

binding affinity of the steroid data set [20,21] for human 

corticosteroid-binding globulins (CBG) and testosterone-

binding globulins (TBG). Many successful endeavors of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CoMFA approach in the areas of enzyme inhibition, 

agrochemistry (pesticides, insecticides or herbicides), 

physicochemistry (partition coefficients, capacity factors, 

enantio-separation and 13C chemical shifts), ADME and 

toxicity, thermodynamics and kinetics have also been 

exhaustively appraised in several reviews [22, 23, 24, 25]. 

 

CONCLUSION 

The CoMFA technique has been developed for more than 

one couple of decades.    Thus far a great number of 

CoMFA studies were performed based on this state-of-

the-art approach .  Scientists have  also  contributed  

everlasting  and  booming  endeavors  to  im- prove the 

predictive quality of the CoMFA model. Herein, the prac- 

ticable CoMFA descriptors, including molecular 

conformation, structural  alignment,  molecular  fields, grid 

spacing  and additional physical  chemical  properties,  

were well presented  as a tutorial  re- view  to provide  

possible  guidance  to the further  CoMFA  studies. Among 

these crucial determinants, bioactive conformation and 

molecular   superposition   engage   an   essential   

portrayal   in   the CoMFA   procedure,   while   different   

combination   of  fields   and physical  chemical  properties  

results  in diverse  predictable  levels. High predictive 

 

Fig. (3). Steric and electrostatic fields in CoMFA studies  
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 models  can also be realized  by adjusting  settings, such 

as energy cutoff values, lattice size and probe types. In 

sum, suggestions for future CoMFA studies are outlined 

below: 

1. The initial geometries of the molecules should be in 

bioactive or theoretical active framework; 

2. Different charge methods should be carefully 

considered  to establish a muscular CoMFA model; 

3. A reasonable molecular alignment is mandatory for a 

trust- worthy CoMFA model; 

4. Cut-off  values  are needed  both  for the steric  and  

electro- static  energy  calculation  and  for  the PLS  

analysis  to reduce unwanted variance; 

5. Other descriptors,  such as Clog P, can substantially  

improve the reliability of the CoMFA model. In the absence 

of statistic significance  in CoMFA  generation,  those  

descriptors  can  be taken into consideration; 

6. Different  probe  atoms  could  be  attentively  

considered  to ameliorate the credibility of CoMFA model; 

7. The lattice location  and size should be unanimously  

deliberated. 
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