Comparative Pharmacognostical Studies of Blue and White Flower Varieties of *Clitoria ternatea* L.

Khatoon S¹, Irshad S¹, Rawat AKS¹ and Misra PK²

¹Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Post Box No. 436, Rana Pratap Marg, Lucknow-226001, India
²Department of Botany, University of Lucknow, Lucknow-226007, India

Abstract

Objective: To establish the quality control parameters for two varieties of *Clitoria ternatea* among which one is medicinally important whereas second is ornamental.

Method: The pharmacognostic studies were focused on macroscopy, qualitative and quantitative microscopy, physicochemical parameters, quantitative estimation of phenolics, flavonoid and also the TLC profiling with two phenolics (caffeic and ferulic acid) and two terpenoid markers (lupeol and β-sitostrol).

Results: The distinguishing macroscopical feature is white and blue colour of corolla while the microscopy showed more starch grains in root; variations in pericyclic fibers, xylem vessels and pith in stem and quantitative parameters of leaf. Some variations were also observed in physicochemical parameters. However, TLC fingerprint profiles of both the varieties showed similarities in the presence of lupeol, β-sitostrol, caffeic acid and ferulic acid. However, characteristic additional bands e.g. blue fluorescent band at Rf 0.38 under UV 366 nm and greyish blue band at Rf 0.58 under visible light after derivatization were observed only in white variety.

Conclusion: Present study provided the scientific data for the proper identification and establishment of standards for the two varieties of *C. ternatea* and blue variety may be used as substitute of white variety with less therapeutic activity.

Keywords: Flavonoids; Macroscopy; Microscopy; Phenolics; Physicochemical parameters; TLC

Introduction

Clitoria ternatea L. belongs to Family: Fabaceae commonly known as 'Butterfly pea' a perennial twining herb, found throughout India in tropical areas. Traditionally it is recommended for the treatment of snakebite, scorpion sting, chronic bronchitis, indigestion, constipation, fever, arthritis, eye ailments, sore throat, skin diseases, rheumatism, syphilis, eye and ear-diseases in India [1-5]; mental problems, epilepsy, insanity, for muscular strength and complexion tonics [6]; as a remedy for hemricaniyas and in swollen joints [7-8] beside this it is a good source of forage legumes in India [9]. Ethnobotanically it is used in various urinary troubles like infection, burning sensation in urinary tract, lack of urination, frequent urination [10] and also reported for purification of urination, frequent urination [10] and also reported for purification after surgical removal of tumor [11]. *C. ternatea* has two varieties, i.e., white flowered and blue flowered. The white-flowered one is found to be therapeutically more active and has been accepted as ‘Shankhpushpi’ by most of the south Indian vaidyas [12]. ‘Shankhpushpi’ consists of conch or ‘Shankha’ shaped flowers, categorized under Ayurvedic Medhya Rasayana drugs that claim as brain tonic and have memory and intelligence enhancing properties. The blue-flowered variety is generally mixed with white-flowered one. Various groups of phytochemicals have been reported from white variety of *C. ternatea* viz. phenolics- kaempferol, quercetin, myricetin and their glycosides [13,14]. The fatty acid content of *C. ternatea* includes palmitic, stearic, oleic, linoleic, and linolenic acids [15-18]. Lactones aparajitin and clitorin were also reported from leaves [19-21]. The leaf mucilage contains anhydro-galacatan, anhydro pentosan and methyl pentosan oleic, linoleic, and linolenic acids [15-18]. Lactones aparajitin and clitorin were also reported from leaves [19-21]. The leaf mucilage contains anhydro-galacatan, anhydro pentosan and methyl pentosan oleic, linoleic, and linolenic acids [15-18]. Lactones aparajitin and clitorin were also reported from leaves [19-21]. The leaf mucilage contains anhydro-galacatan, anhydro pentosan and methyl pentosan oleic, linoleic, and linolenic acids [15-18]. Lactones aparajitin and clitorin were also reported from leaves [19-21]. The leaf mucilage contains anhydro-galacatan, anhydro pentosan and methyl pentosan.

Materials and Method

Collection and authentication of plant material

The selected blue and white variety of *Clitoria ternatea* were collected from Lucknow, India in April 2012, their herbarium specimens were prepared as per standard herbarium procedure [35] and deposited in the herbarium of CSIR-National Botanical Research Institute, Lucknow wide voucher specimen number LWG-002 and LWG-32 respectively.

Macro-microscopical studies

The macroscopy of two varieties of *C. ternatea* was described with the help of Flora [36]. Plant materials were dried at 40 ± 2°C for 4-5 days in a hot air oven. The samples were stored at 25 ± 2°C in air-tight containers and grounded to form fine powder when required and filtered through sieve of 345 micron pore size. Qualitative were done by hand cut sectioning in transverse planes best sections were picked out for mounting after the staining and dehydration were completed, quantitative microscopy for stomatal number, somatotic and palisade ratio were done by slide preparation after clearing.

Corresponding author: Sayyada Khatoon, Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Post Box No. 436, Rana Pratap Marg, Lucknow-226001, India, Tel: +91-0522-2297817; Fax: +91-0522-2205836; E-mail: sayyadak@gmail.com

Received September 15, 2015; Accepted October 10, 2015; Published October 18, 2015

Copyright: © 2015 Khatoon S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Physicochemical and phytochemical studies

Total ash, acid-insoluble ash, alcohol soluble extractive, water soluble extractive and residual moisture content were calculated as per pharmacopoeial methods [40]. The preliminary phytochemical screening for the presence of steroid, triterpenoids, flavonoids, alkaloids, carbohydrate, glycosides, tannin and saponins etc. was done according to Evans [39] and estimation major phytoconstituents according to following described methods.

Estimation of total sugar: Total amount of sugar present in the drug was calculated based on the Montgomery method [41] using a spectrophotometer (Thermo electronic, Double Beam UV-vis Spectrophotometer). 10% homogenate of the plant tissue in 80% ethanol was prepared and centrifuged at 2000 rpm for 15 minutes. The supernatant obtained was made up to known volume (10 ml or depending expected conc. of sugar). 0.1 ml aliquote was taken and 0.1 ml of 80% phenol and 5 ml conc. H₂SO₄ were added. Cooked and then the absorbance at 490 nm were noted. D-Glucose was taken as positive control. Standard curve was made by plotting a graph between optical density (OD) and concentrations of different dilutions (0.01, 0.02, 0.03, 0.04 and 0.05mg/ml) of standard D-Glucose. The percentage of sugar was calculated using formula. % sugar = Conc. At UV x Ext. value x 100/1000.

Estimation of total starch: Total amount of starch present in the drug was calculated based on the Montgomery method [41] using spectrophotometer (Thermo electronic, Double Beam UV-vis Spectrophotometer). 10% homogenate of the plant tissue in 80% ethanol was prepared and centrifuged at 2000 rpm for 15 minutes. Added 4 ml of distilled water to the residue heated on a water bath for 15 minutes and macerated with the help of glass rod. To each of the samples, added 3 ml 52% perchloric acid and centrifuged at 2000 rpm for 15 minutes. The supernatant thus obtained was made up to known volume (generally up to 10 ml). 0.1 ml aliquote was taken, 0.1 ml of 80% phenol and 5 ml conc. H₂SO₄ were added to it. Cooked and then noted the absorbance at 490 nm. The percentage of starch was calculated using formula. % starch = Conc. At UV x Ext. value x 100/1000.

Estimation of total phenolic content (TPC): The amount of total phenolics present in the drug was calculated according to the Bray and Thrope [42]. A stock solution of 1 mg/ml methanolic plant extract was prepared. 0.5 ml stock solution was taken in a test tube and added 10ml distill water and 1.5 ml folin reagent, kept for 5 minutes then added 4 ml 20% Na₂CO₃ made the volume up to 25 ml with distill water, and kept for 30 minute. The OD (optical density) was taken at 765 nm using the spectrophotometer (Thermo electronic, Double Beam UV-vis Spectrophotometer). Gallic acid of different dilutions (0.2, 0.4, 0.6, 0.8 µg/ml) was used as standard. TPC was calculated in percent by the following formula: TPC = conc. In 1 ml x Ext. value x 100/1000.

Estimation of total flavonoids content (TFC): The amount of total flavonoid present in the drug was calculated according to the Woisky and Salatino [43]. A stock solution of 1 mg/ml methanolic plant extract was prepared. 0.5 ml stock solution was taken in a test tube and added 0.5 ml 2% methanolic AlCl₃ and volume made up to 5 ml with methanol. Yellow colour indicated the presence of flavonoid. Read the optical density (OD) at 420 nm using the spectrophotometer (Thermo electronic, Double Beam UV-vis Spectrophotometer). Quercetin solution used as standard in serial dilutions of 4, 8, 12, 16, 20 µg/ml. TFC was calculated in percent by the given formula: TFC = conc. In 1 ml x Ext. value x 100/1000.

Thin layer chromatographic (TLC) finger printing

For TLC studies, powdered plant materials were placed in appropriately sized volumetric flasks. 25 mL methanol was added to 4 g of powder of each plant, shaken on shaker for 2 hrs, kept at rest overnight. The methanolic extracts were filtered through Whatmann No. 1 filter paper. The procedure was repeated thrice with methanol (25 mL) at room temperature (25°C± 2°C). The extracts were concentrated under reduced pressure at a temperature of 45 ± 2°C. Accurately weighed 10 mg of the extract was dissolved in 1 mL methanol, and filtered through a 0.45 µm filter membrane, the filtrate was used as sample solution. 1 mg each of ferulic acid, caffeic acid, β-sitosterol and lupeol were dissolved in 10 mL methanol to get 0.1 mg/ml solution of standard markers. TLC was performed on 20 x 10 cm silica TLC aluminium sheet, coated with 0.2 mm layer of silica gel containing UV 254 fluorescent indicator (S.D. Fine Chemicals, India). Samples (20 µL) and standards (10 µL) were applied to the plates by means of a Camag (Switzerland) Linomat 5 sample applicator. The plates were developed to a distance of 8 cm from the lower edge of the plate with 20 mL toluene-ethyl acetate-formic acid (8.5:1.5:0.1 v/v/v) as mobile phase, in a Camag twin-trough chamber, previously saturated with mobile phase vapor for 30 min at 25 ± 2°C. After removal from the chamber, plates were completely dried in air at room temperature (25 ± 2°C) and documented under UV 254 nm and UV 366 nm. The plates were dipped in anisaldehyde sulphuric acid reagent, dried and heated at 110 ± 2°C for 5 min and documented under visible light after derivatization.

Results

Macro and microscopy

Both varieties of Clitoria are morphologically very similar except white and blue colour of petals. Stem: 20-45 cm, slender, terete, downy, splintery fibrous, surface smooth, internode 6-13 cm, taste bitter; Leaf: leaflets 4, opposite in pairs, ovate or oblong, obtuse, subcoriaceous 2-5 cm in length and 1-2 cm in width, apex macronate, surface hairy; Stipules: minute, linear; Flowers: solitary, axillary, bracteoles large, obtuse; Calyx: 1-1.5 cm, teeth lanceolate nearly as long as the tube; Corolla: 3-5 cm long; Pod: 6-8 cm, flat, sparingly hairy, 6-10 seeded (Figure 1). Comparative qualitative, quantitative microscopy, powder (Table 1; Figures 2 and 3) and fluorescence analysis details of two studied variety of C. ternatea are given in Table 2.

Physicochemical and phytochemical studies

The comparative results of physicochemical parameters viz. water extractive; alcoholic extractive, total ash, acid insoluble ash, residual moisture content, total sugar, starch; TPC and TFC have been represented in Figure 4. The results of preliminary phytochemical screening are presented in Table 3.
walls and cell contents, when properly mounted in stains, reagent or ascertained through the study of the tissue and their arrangement, cell histology in respect to its organs and diagnostic features of these are under a compound microscope. Every plant possess a characteristic plants is based on the examination of mounts of the thin sections of them for above incongruity [44]. Microscopical method of valuing medicinal and physicochemical analysis are major pharmcognostical parameters even present time [45-46]. Morphological, microscpical, phytochemical unraveling this problem by pharmacognostic studies of medicinal plants identification of plant material [44]. There are several evidences of and quantity of chemical constituents which is starts with wrong

Discussion

Therapeutic efficacy of medicinal plants depends upon the quality and quantity of chemical constituents which is starts with wrong identification of plant material [44]. There are several evidences of unraveling this problem by pharmacognostic studies of medicinal plants even present time [45-46]. Morphological, microscpical, phytochemical and physicochemical analysis are major pharmcognostical parameters for above incongruity [44]. Microscopical method of valuing medicinal plants is based on the examination of mounts of the thin sections of them under a compound microscope. Every plant possess a characteristic histology in respect to its organs and diagnostic features of these are ascertained through the study of the tissue and their arrangement, cell walls and cell contents, when properly mounted in stains, reagent or mounting media. The microscopical features of two studied varieties of C. ternatea (Table 1) clearly showed some identifying anatomical structures like more starch grains in transverse section of root; broad patches of pericyclic fibers, more vessels with broad lumen and broad pith region in the stem of white variety (Figure 2 and 3). Further, the quantitative leaf microscopy showed slight variation in stomatal number, somatal index and palisade ratio (Table 1). Fluorescence analysis also an important parameter for quality control point of view, because some phytochemicals showed fluorescence in different UV range after reacting with different reagents [44]. Two studied varieties of C. ternatea showed some significant variation in fluorescence analysis (Table 2). White and blue flower varieties showed different intensity of florescence with acetic acid (5%) that indicates variation in the quality and quantity of phy-to-constituents in two varieties. Physicochemical and phytochemical studies showed that white variety have high ash value but low acid insoluble ash depicted comparatively high level of carbonates, phosphates and low level of silicates and silica content in white variety (Figure 4). Extractive value of the crude drug also useful parameter for the evaluation and standardization and gives the idea of nature of the chemical components soluble in particular solvent. High value of water and alcohol extractive percentage in white C. ternatea variety showed high concentration of polar compounds. These parameters are useful in determining authenticity and purity of drug and also these values are important quantitative standards [37-42].

Further, the preliminary phytochemical screening showed presence of steroid, flavonoids, alkaloid, carbohydrate, glycosides, tannins and saponins in both variety but white variety gave better results for flavonoid, alkaloid, carbohydrate and glycosides while blue variety for saponins and tannins (Table 3). These secondary metabolites have infatuated different pharmacological effects and liable for various pharmacological activities of C. ternatea varieties. Sugar and starch contents were also more in white variety showed its high rate of photosynthesis and high level of glucosides bounded chemical groups; this is a useful standardization parameter [47].

The characteristic bands showed in TLC profiling (Figure 5) are significant point of quality standards. The results showed that the marker components viz. caffeic acid, ferulic acid, β-sitosterol and lupeol were represented at Rf 0.14, 0.30, 0.48, 0.62, respectively (Figure 5).

Figure 1: Plants of two Clitoria ternatea varieties. A: white variety, B: blue variety. (under visible light after derivatization) were observed in both the varieties. However, the characteristic blue fluorescent band at Rf 0.38 under UV 366 nm and greyish blue band at Rf 0.58 after derivatization under visible light were observed only in white variety (Figure 5). The corresponding bands of four chemical markers viz. caffeic acid, ferulic acid, β-sitosterol and lupeol were represented at Rf 0.14, 0.30, 0.48, 0.62, respectively (Figure 5).

Conclusion

Quality of herbal drug in term of chemical constituents and their efficacy necessitates the need of quality control studies of raw drug materials using pharmacognostical standardization. World health organization (WHO) has also created awareness towards validation of

<table>
<thead>
<tr>
<th>Parts</th>
<th>White flower variety</th>
<th>Blue flower variety</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Root</td>
<td>Root</td>
</tr>
<tr>
<td></td>
<td>Circular in outline, outer most cork 5-7 layered; cortical region is well developed</td>
<td>Almost similar in anatomical features except very less starch deposition in cortical region, xylem comparatively less developed.</td>
</tr>
<tr>
<td></td>
<td>with more starch grains; phloem region is narrow, and xylem region is comparatively well developed.</td>
<td></td>
</tr>
<tr>
<td>Stem</td>
<td>TS almost circular with wavy outline, outermost layer of cuticle bearing both simple and glandular trichomes; cortical region is parenchymatous, 4-5 layered followed by endodermis; pericyclic fibers are in broad patches; phloem region is comparatively narrow and xylem region broad and comprises of more broad lumen vessels; pith parenchymatous and comparatively broad.</td>
<td>Similar to white variety except, narrow patches of pericyclic fibers, narrow xylem region and vessels with comparatively narrow lumen.</td>
</tr>
<tr>
<td>Leaf</td>
<td>TS of leaf dorsiventral with collateral, centrally located meristele; trichomes present, similar as in stem; epidermal cells wavy in surface view; cuticle striated, stomata subcoriaceous, rubeaceusus present on both side, calcium oxalate crystals are prismatic in shape and present along the veins.</td>
<td>Similar as in white variety.</td>
</tr>
<tr>
<td></td>
<td>Stomatal number ranges 290-400 on lower epidermis and stomatal index 17.25-18.90 while on the upper epidermis stomatal number ranges 150-250 and stomatal index ranges 14.5-16.8. Palisade ratio ranges from 4-6.</td>
<td>Stomatal number ranges 250-350 on lower epidermis and stomatal index 15.50-1675 while on the upper epidermis stomatal number ranges 200-250 and stomatal index ranges 12.25-14.45. Palisade ratio ranges from 5-7.</td>
</tr>
<tr>
<td>Powder</td>
<td>Cork cells, glandular and simple trichomes, vessels with scalariform and reticulate thickenings, fibres, patches of pericyclic fibres and prismatic crystals of calcium oxalate are observed.</td>
<td>Similar as in white variety.</td>
</tr>
</tbody>
</table>

Table 1: Comparative microscopical detail of two varieties of *Clitoria ternatea.*

<table>
<thead>
<tr>
<th>Reagents Under visible light</th>
<th>Under UV 254</th>
<th>Under UV 366</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeCl₃ (5%)</td>
<td>G</td>
<td>DG</td>
</tr>
<tr>
<td>I₂ (5%)</td>
<td>DG</td>
<td>G</td>
</tr>
<tr>
<td>NaOH</td>
<td>G</td>
<td>LG</td>
</tr>
<tr>
<td>NH₃BKG</td>
<td>BKG</td>
<td>DB</td>
</tr>
<tr>
<td>HNO₃</td>
<td>LB</td>
<td>RO</td>
</tr>
<tr>
<td>CH₃COOH</td>
<td>B</td>
<td>FG</td>
</tr>
</tbody>
</table>

Abbreviations: Green (G), Dark green (DG), Blackish green (BKG), Light brown (LB), Brown (B), Yellowish green (YG), Bluish green (BLG), Light green (LG), Reddish brown (RB), Dark green (DG), Dark brown (DB), Reddish orange (RO), Light orange (LO), Florescent green (FG), Florescent yellow (FY), Yellow (Y), Orange (O).

Table 2: Comparative fluorescence analysis details of two varieties of *Clitoria ternatea.*

Figure 2: Microscopy of *C. ternatea* white variety. A: T.S. Root, B: T.S. Stem, C; D: T.S. Leaf E: Leaf surface and F: Powder and their structures a: cork cells, b: simple trichomes, glandular c: trichome, d: pericyclic fibres, e: bundle of fibers, f: vessel, g: prismatic crystals of calcium oxalate. Abbreviations: ck, cork; ct, cortex; gt, glandular trichome; lepi, lower epidermis; mr, medullary rays p, pith; pal, palisade layer; ph, phloem; sg, starch grains; sm, spongy mesophyll; uepi, upper epidermis; v, vessels; xy, xylem.

Figure 3: Microscopy of *C. ternatea* blue variety. A: T.S. Root, B: T.S. Stem, C; D: T.S. Leaf E: Leaf surface and F: Powder and their structures a: cork cells, b: simple trichomes, glandular c: trichome, d: pericyclic fibres, e: bundle of fibers, f: vessel, g: prismatic crystals of calcium oxalate. Abbreviations: ck, cork; ct, cortex; gt, glandular trichome; lepi, lower epidermis; mr, medullary rays p, pith; pal, palisade layer; ph, phloem; sm, spongy mesophyll; uepi, upper epidermis; v, vessels; xy, xylem.
plant based drug to maintain the quality, safety and efficacy. The macro-
microscopic characterization is an important parameter for proper
authentication of crude drug even in powdered form. However, the
physico-chemical values are useful to ascertain the identity, purity and
strength of both the varieties of *C. ternatea*. As *C. ternatea* white variety
being a nerve tonic in traditional systems of medicine, has a potential
to develop neuroprotective drug. The blue variety may be a substitute
of white variety. In addition, the parameters which are reported here
can be considered as a distinctive enough to identify and decided the
authenticity of the more medicinally valuable variety of *C. ternatea* in
herbal industries and also helpful as reference for researchers.

Acknowledgement

The Authors are thankful to Director CSIR-National Botanical Research
Institute, Lucknow for providing lab facility for this research work and first author
is also thankful to Indian Council of Medical Research, New Delhi for financial
support.

References

 medicine Clitoria ternatea—from traditional use to scientific assessment. J
 Ethnopharmacol 120: 291-301.
 Meghalaya, Northeast India- A mini review. Indian J Tradit Know 9: 38-44.
5. Meena AK, Rao MM (2010) Folk herbal medicine used by the Meena community
6. Anonymous (1976) Medicinal Plants of India. Indian Council of Medical
 and Industrial Products: National Institute of Science Communication, New
 Delhi, India.
 Multipurpose Forage Legume for the Tropics - An Overview. Pakistan Journal
 of Science 2: 374-379.
 Ethenobotany of ‘Chatara’ Block of District Sonebhadra, Uttar Pradesh, India.
 Varanasi.
 glucosides and flavonols from Clitoria ternatea. Phytochem 24: 1583-1586.

Table 3: Results of phytochemical screening of methanolic extract of two varieties
of *Clitoria ternatea*.

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>White variety</th>
<th>Blue variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steroid</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Triterpenoids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Glycosides</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>

Figure 4: Comparative details of A: Physicochemical and B: Phytochemical
parameters of methanolic extract of two *C. ternatea* varieties.

Figure 5: TLC profile of methanolic extract of two *C. ternatea* varieties. 1, white; 2, blue; R1, Lupeol; R2, β-sitosterol; R3, caffeic acid and R4, Ferulic
acid. A: visualization under UV 254nm, B: visualization under UV 366nm, C: visualization under visible light after derivatization.

22.

