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An effective algorithm for the calculation of the thermo-elasticity of 
solid compounds is discussed and implemented into the CRYSTAL 
program, a quantum-mechanical ab-initio simulation software (www.
crystal.unito.it). The computational approach to the characterization of 
advanced properties of materials is becoming a powerful complementary 
tool to actual experiments in the laboratory because of its increasing 
accuracy and efficiency. The term thermo-elasticity means the thermal 
dependence of the elastic response of the system. More precisely, 
speaking about crystalline materials, we should talk about anisotropic 
thermo-elasticity. This explicitly refers to the ability of characterizing the 
directional elastic properties and not just their average values - that would 
be sufficient for isotropic media, such as fluids or amorphous solids.

First of all, the athermal elastic response of a system should to be 
introduced. It is well known that for the mono-dimensional system – 
such as a simple spring - its elasticity can be described by the Hooke’s 
Law, in which the elastic constant is a plain scalar describing the linear 
relationship between the applied strength and observed elongation. By 
making use of Tensor Algebra, it is possible to extend this law so that 
the same concepts can be applied to three-dimensional continuous 
media as well. Specifically, the elasticity of solid compounds has to be 
expressed in terms of the fourth-order stiffness tensor. Its elements - the 
elastic constants – define the directional linear relationships between 
the stress (the forces that the material is experiencing per unit of 
area) and the strain (deformation per unit of length). Thanks to the 
symmetry (both intrinsic into the elastic property itself and particular 
of the given crystal) only a few of the components of this tensor are 
actually independent and have to be computed.

Then, as the second topic, the thermal effects on solid compounds 
have to be discussed - especially from the Quantum-Mechanical 
point of view. In this respect, owing to its high accuracy and modest 
computational costs, the Density Functional Theory (DFT) arguably 
represents the method of choice for systems of small to medium size 
and complexity [1]. Since we are speaking about solids, the only degrees 
of freedom involved are the vibrational ones. In the last decades, this 
phenomenon has mainly been treated by means of standard harmonic 
lattice dynamics. However, when anharmonic thermal effects are 
totally neglected, the volume and elastic response do not exhibit any 
dependence on the temperature [2]. An easy way to overcome these 
limitations is offered by the so-called quasi-harmonic approximation: 
it is based on the assumption that the harmonic approximation holds 
for every value of the volume, which is to be viewed as an adjustable 
parameter [3]. That is, by introducing the explicit volume dependence 
into the expression of phonon frequencies, the harmonic expression for 
the Helmholtz free energy can be retained. The point is that it is then 
expressed as function of both volume and temperature (and not just 
of temperature as it would be at the harmonic level). By minimizing 
this function for a given temperature, it is possible to determine the 
corresponding equilibrium volume. Therefore, by the repetition of this 
process at several temperatures, it is possible to determine the thermal 
expansion of the compound.

In order to properly describe the thermo-elasticity, both the topics of 
elastic response and thermal effects have to be combined together. In 
general, the thermo-elastic constants of the compound are given by 
the second-order derivatives of the energy with respect to the strain, 
normalized by the volume at that temperature. A few approaches are 

discussed that make use of different expressions for such energy and 
volume. As a drastic simplification, it is possible to consider only 
the static electronic energy and no vibrational motion; despite being 
computationally very cheap, the resulting elastic constants will not 
exhibit any dependence on the temperature at all and are therefore 
completely athermal. The first non-trivial model is represented by 
the Quasi-Static Approximation, which assumes that most of the 
thermal dependence of the elastic response can be attributed to the 
thermal expansion of the system only. The electronic static energy 
is still used to compute the energy derivatives, but the equilibrium 
volume at any given temperature is now considered. A further 
refinement can be obtained by fully applying the Quasi-Harmonic 
Approximation to the elasticity expression, so that - in addition to 
the thermal expansion – the Helmholtz free energy (which does take 
into account thermal contributions for vibrations) is employed to 
perform the derivatives [4]. Being an explicit treatment of the lattice 
dynamics, this approach is of course much more expensive than the 
previous ones; It is however able to provide better results, especially 
about some fine effect such as the anisotropy of the thermo-elasticity.

We studied the Forsterite mineral which has an orthorhombic 
lattice, unit formula Mg2SiO4 and space group Pbnm [5]. There are 
therefore 9 independent elastic constants that have to be determined. 
We have chosen a non-trivial system because we wanted a medium-
complexity test case for our algorithm. At first, the thermal expansion 
of the Forsterite has been determined by making use of several DFT 
functionals - characterized by different cost and accuracy. The general 
conclusion is that different functionals provide different absolute 
values but their description of the thermal dependence - the trend - 
is extremely consistent and very close to the experimental data. Then 
our newly-implemented algorithms have been employed in order to 
compute the thermo-elastic constants (Figure 1). As for the Quasi-Static 
Approximation, we found that the thermal effects have been partially 
underestimated – indeed, the contribution due to vibrational energy is still 
neglected in this model. Instead, a full Quasi-Harmonic Approximation 
is able to provide excellent results: the predicted thermal dependence is 
in excellent agreement with experimental data – especially in the trend.

Fig.1.Thermal dependence of the elastic constants of the Forsterite 
mineral. Computed values are represented as solid lines (Quasi-Static 
Approximation on the left, Quasi-Harmonic on the right) and are 
compared to experimental values, represented by bullets.
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