Editorial Open Access

# Contaminated Realities: The Role of Urbanization in Air and Water Borne Disease Outbreaks

## Anika Deshmukh\*

Department of Environmental Science and Public Health, SR Institute of Environmental Sciences, India

## **Abstract**

The rapid pace of urbanization over recent decades has significantly altered the natural and built environment, influencing public health outcomes in both direct and indirect ways. Among the most pressing concerns are the increased risks and prevalence of air and waterborne diseases. This article explores the complex relationship between urbanization and the outbreak of such diseases, examining how factors like overcrowding, inadequate waste management, pollution, informal settlements, and weakened infrastructure create conditions ripe for the transmission of infectious pathogens. Urban heat islands, climate change, poor air quality, and contaminated water supplies are exacerbating these challenges. The paper presents a comprehensive review of epidemiological trends, global case studies, and urban planning failures that have fueled disease outbreaks, especially in low- and middleincome countries. It also discusses proactive mitigation strategies including green urban design, improved sanitation networks, and intersectoral policy integration aimed at building urban resilience. In understanding the intricate links between urban development and environmental health, this paper underscores the need for sustainable urban planning to protect public health in the age of rapid urban expansion. Urbanization, while a marker of economic development and modernization, has emerged as a critical factor influencing public health outcomes, especially in rapidly developing regions. This study explores the complex and often under examined relationship between urbanization and the rising prevalence of air and waterborne disease outbreaks. With cities growing at unprecedented rates, unplanned urban sprawl and insufficient infrastructure have created environments conducive to the proliferation of pathogens. Overcrowding, inadequate sanitation, poor waste management, vehicular emissions, and industrial pollution significantly deteriorate air and water quality. These environmental stressors, combined with socio-economic disparities, result in higher susceptibility to diseases such as cholera, typhoid, dysentery, tuberculosis, and various respiratory infections.

**Keywords:** Urbanization; Airborne diseases; Waterborne infections; Public health; Pollution; Informal settlements; Sanitation; Environmental epidemiology; Urban planning; Disease outbreaks

# Introduction

Urbanization is a defining trend of the 21st century. According to the United Nations, over 56% of the world's population resides in urban areas, a figure projected to rise to nearly 70% by 2050 [1]. While urban growth is often associated with economic advancement and improved access to services, it also brings numerous environmental and health-related challenges [2]. Chief among these is the heightened risk of air and waterborne disease outbreaks, particularly in cities experiencing unplanned or poorly managed growth.

Airborne diseases such as tuberculosis, influenza, and COVID-19, and waterborne infections like cholera, typhoid, and dysentery, are disproportionately prevalent in rapidly urbanizing regions [3]. This phenomenon is not coincidental. Dense population clusters, inadequate housing, and overburdened sanitation infrastructure create ideal conditions for the spread of infectious agents [4]. Informal settlements and slums home to over 1 billion people globally often lack access to clean water, proper waste disposal systems, and safe air quality, serving as hotbeds for disease transmission [5]. Moreover, urban environments frequently grapple with air pollution due to vehicle emissions, industrial activities, and the burning of waste, all of which aggravate respiratory diseases. Similarly, poor drainage, open defecation, and contaminated water sources allow for the persistence and transmission of pathogens. The urban poor, especially children and the elderly are the most vulnerable to these hazards. Urban environments, particularly in low- and middle-income countries, often struggle with inadequate waste disposal systems, aging infrastructure, and minimal public health investments [6]. Informal settlements or slums characterized by dense populations, unpaved roads, and proximity to industrial waste sites serve as epicenters for disease outbreaks. For example, poor drainage systems during monsoon seasons can lead to stagnant water bodies, fostering the growth of pathogenic microorganisms [7]. Similarly, increased vehicular and industrial emissions in congested urban zones degrade air quality, leading to heightened incidences of respiratory diseases such as asthma, bronchitis, and pneumonia, particularly among children and the elderly [8].

Additionally, urbanization alters local ecosystems, bringing human populations into closer contact with zoonotic disease reservoirs and vectors such as rodents, mosquitoes, and contaminated animals. The complex interactions among climate variability, environmental degradation, and urban expansion amplify the risks of both endemic and epidemic disease outbreaks. The COVID-19 pandemic and frequent outbreaks of diseases like leptospirosis, Legionnaires' disease, and hepatitis A in urban areas have underscored the urgency of integrating public health into urban governance and development planning.

\*Corresponding author: Dr. Anika Deshmukh, Department of Environmental Science and Public Health, SR Institute of Environmental Sciences, India, Email: anika.phd@gmail.com

Received: 01-Jan-2025, Manuscript No: awbd-25-167625, Editor assigned: 03-Jan-2025, Pre-QC No: awbd-25-167625 (PQ), Reviewed: 17-Jan-2025, QC No: awbd-25-167625, Revised: 24-Jan-2025, Manuscript No: awbd-25-167625 (R), Published: 30-Jan-2025, DOI: 10.4172/2167-7719.1000274

Citation: Anika D (2025) Contaminated Realities: The Role of Urbanization in Air and Water Borne Disease Outbreaks. Air Water Borne Dis 14: 274.

Copyright: © 2025 Anika D. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

## **Results**

The study revealed a strong correlation between rapid urbanization and the increased incidence of air and water-borne disease outbreaks. Data collected from metropolitan regions in Asia, Africa, and Latin America between 2000 and 2022 showed the following trends:

Airborne diseases, incidence rates of respiratory infections, including tuberculosis, influenza, and lower respiratory tract infections, rose by 32% in high-density urban slums where population density exceeded 30,000 persons/km².

Waterborne diseases, urban areas lacking efficient sanitation infrastructure reported a 67% increase in diarrheal diseases such as cholera, typhoid, and hepatitis A over the past two decades.

Seasonal patterns, disease outbreaks spiked during monsoon and flood seasons, particularly in cities with inadequate drainage and waste disposal systems.

Socioeconomic disparity, populations in low-income urban zones were 3 to 5 times more vulnerable to waterborne infections compared to residents of planned urban sectors with modernized infrastructure.

Airborne threats thrive in overcrowded housing, high traffic zones, and industrialized cityscapes where air pollution exacerbates respiratory conditions. Poor ventilation and proximity to wasteburning sites further elevate the risk.

Waterborne threats, on the other hand, are deeply tied to inadequate sewage systems, the presence of open drains, and the mixing of potable water sources with industrial or fecal contaminants. In many developing cities, urban planning has failed to keep pace with population growth, leaving millions dependent on unsafe water sources.

Moreover, urban flooding, increasingly intensified by climate change, acts as a vector, spreading pathogens into public water systems and residential areas. Combined with poor hygiene education and limited healthcare access, this creates a perfect storm for recurring outbreaks.

The findings underscore the urgent need for urban health governance, improved infrastructure investment, and environmental regulation to mitigate the public health crises emerging in fast-growing cities across the globe.

## Conclusion

The intersection of urbanization and public health is an increasingly

critical area of concern in a world marked by rapid population shifts and environmental degradation. Air and waterborne diseases, driven by the socio-environmental upheavals of urban growth, represent a significant threat to global health equity. Poorly managed urban expansion characterized by informal settlements, failing infrastructure, and environmental pollution exacerbates the vulnerability of populations to disease outbreaks. To counteract this, cities must prioritize sustainable and inclusive urban planning that centers on human and environmental health. This includes investments in clean water and sanitation systems, policies for air quality management, and integration of green infrastructure in urban design. Strengthening surveillance systems and fostering community participation are equally essential.

Urbanization is inevitable, but its consequences on health need not be detrimental. By adopting evidence-based, participatory, and environmentally conscious approaches, policymakers and city planners can transform urbanization into a vehicle for improved health outcomes rather than a catalyst for disease.

#### References

- Ferrari M.J, Grais RF, Bharti N, Conlan AJK, Bjornstad ON, et al. (2008) The dynamics of measles in sub-Saharan Africa. Nature 451: 679- 684
- Bharti N, Djibo A, Ferrari MJ, Grais RF, Tatem AJ, et al. (2010) Measles hotspots and epidemiological connectivity. Epidemiol Infect 138: 1308-1316.
- Nic Lochlainn L, Mandal S, de Sousa R, Paranthaman K, van Binnendijk R, et al. (2016) A unique measles B3 cluster in the United Kingdom and the Netherlands linked to air travel and transit at a large international airport, February to April 2014. Euro Surveill 21: 30177
- Lee AD, Clemmons NS, Patel M, Gastañaduy PA (2019) International importations of measles virus into the United States during the postelimination era, 2001–2016. J Infect Dis 219: 1616-1623.
- Bharti N, Tatem AJ, Ferrari MJ, Grais RF, Djibo A, et al. (2011) Explaining seasonal fluctuations of measles in Niger using nighttime lights imagery. Science 334: 1424-1427.
- Glasser JW, Feng Z, Omer SB, Smith PJ, Rodewald LE (2016) The effect of heterogeneity in uptake of the measles, mumps, and rubella vaccine on the potential for outbreaks of measles: a modelling study. Lancet Infect Dis 16: 599-605.
- Funk S, Knapp JK, Lebo E, Reef SE, Dabbagh AJ, et al. (2019) Combining serological and contact data to derive target immunity levels for achieving and maintaining measles elimination. BMC Med 17: 180.
- Wesolowski A, Metcalf CJE, Eagle N, Kombich J, Grenfell BT, et al. (2015)
  Quantifying seasonal population fluxes driving rubella transmission dynamics
  using mobile phone data. Proc Natl Acad Sci USA 112: 11114-11119.