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Short Communication
The aryl hydrocarbon receptor (AhR), which acts as a transcription

factor when bound by a ligand, regulates a variety of physiological
processes, most notably cellular activities related to immune
responsivity. Observations of disrupted bone tissue healing and slowed
endochondral ossification in AhR−/− mice indicate strongly that AhR
also modulates skeletal remodeling, though the signaling mechanism
through which AhR affects osteoclastogenesis remains to be resolved.
Recent studies have shown that receptor activator of nuclear factor
kappa-B ligand (RANKL) causes rapid upregulation of AhR expression
in bone marrow-derived osteoclasts. Ligand activated AhR by the
smoke toxin BaP increased osteoclast differentiation in a receptor
AhR-dependent manner. Mitochondrial biogenesis in osteoclasts is
subject to regulation by AhR. AhR involvement in osteoclastogenesis
makes AhR a potential therapeutic target for the treatment of
inflammatory and metabolic bone diseases. The present review
highlights the recently uncovered critical role that RANKL–AhR–c-Fos
signaling plays in osteoclastogenesis.

A bone metabolic switch
The aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix/

Pas-Arnt-Sim family transcription factor that becomes activated when
bound by a ligand [1,2]. AhR ligands include various environmental
toxins as well as endogenous molecules [1,3]. Inactive cytosolic AhR is
found in a protein complex, and ligand-activated AhR translocates to
the nucleus where it forms a dimer with its nuclear translocator protein
Arnt [2,4]. The AhR-Arnt dimer then regulates target genes by binding
xenobiotic response element sequences in their promoter regions; AhR
target genes include drug-metabolizing cytochrome P450 (Cyp)
enzymes and the steroid biosynthesis enzyme NAD(P)H:quinone
oxidoreductase [2].

Carcinogens in smoke have been shown to degrade bone tissue via
influences on osteoclastogenesis [5-8]. A key culprit, the toxin
benzo[a]pyrene (BaP), stimulates osteoclastogenesis by binding AhR
and thereby triggering activation of several Cyp1 isoforms [9-12].
However, the downstream signaling pathways mediating these effects,
particularly in the context of bone repair, are unclear. Moreover, the
levers controlling AhR expression in osteoclasts have not been
demonstrated.

Skeletal homeostasis
Bone tissue is formed by osteoblasts, which are derived from

mesenchymal stem cells, and bone resorption is conducted by

osteoclasts, which are multinucleated giant cells formed by the fusion
of macrophages [13]. The skeleton is a dynamic tissue whose constant
remodeling depends upon the balance of osteoclast-mediated bone
resorption and osteoblast-mediated bone formation. Various diseases
have been related to an osteoblast-osteoclast imbalance, including
osteoporosis, rheumatoid arthritis, gum disease, and metastatic bone
cancer [14,15].

Osteoclasts become terminally differentiated and activated in
response to binding of receptor activator of nuclear factor kappa B
ligand (RANKL), a tumor necrosis factor (TNF) family cytokine, to its
receptor RANK [16-18]. RANKL binding of RANK induces c-Fos
expression, and c-Fos then enables the downstream induction of
NFATc1 (nuclear factor of activated T-cells, cytoplasmic 1), which
modulates the terminal differentiation of osteoclasts [15,19]. The
importance of c-Fos in osteoclastogenesis is evidenced by the fact that
mice deficient in c-Fos exhibit osteopetrosis [19,20].

RANKL and epigenetic signaling pathways involved in
osteoclast differentiation

RANKL binding of RANK in osteoclast precursor cells triggers the
activation of several mitogen-activated protein kinase (MAPK)
pathways, including signaling by TNF receptor-associated factor,
family mediated c-jun N-terminal kinase (JNK), p38, and nuclear
factor-kappa B (NF-κB) [21]. Osteoclast precursors express the
macrophage colony-stimulating factor (M-CSF) receptor c-Fms, and
stimulation by M-CSF activates MAPK pathways such as Akt and
extracellular signal-regulated kinase (ERK) signaling [22]. In a recent
study examining whether AhR activation may involve RANKL or M-
CSF in AhR−/− cells, we found that the absence of AhR disrupted
activation of downstream cell signaling pathways in response to
RANKL, but not M-CSF, indicating that AhR promotion of osteoclast
differentiation may be mediated by way of sensitization of osteoclast
precursors to RANKL [23].

Emerging evidence suggests that epigenetic machinery plays an
essential role in the normal development and tissue homeostasis in
mammals. For instance, recent observation revealed that inhibition of
the catalytic activity of histone H3 lysine 9 (H3K9) methyltransferases
G9a and its partner modifier GLP is able to suppresses the RANKL-
associated osteoclast differentiation [24]. In addition, as aberrant
osteoclast formation during critical illness was also linked to global
histone hypo-methylation [25], these findings suggested that
establishment and maintenance of heterochromatin status at particular
loci in the osteoclasts is critical for their development. Strikingly, as
G9a/GLP complex maintains DNA methylation [26] and their

Izawa T, et al., J Cytokine Biol 2017, 2:2

Short Communication OMICS International

J Cytokine Biol, an open access journal Volume 2 • Issue 2 • 1000114

Jo
ur

na
l of Cytokine Biology Journal of Cytokine Biology

DOI: 10.4172/2576-3881.10001114

J Cytokine Biol, an open access journal
ISSN:2576-3881

Jo
u r

na
l o

f Cytokine Biology

ISSN: 2576-3881

mailto:tizawa@tokushima-u.ac.jp


associated H3K9me2 is also involved in the protection of DNA
methylation during DNA replication [27], proper patterns of DNA
methylation, another heterochromatin marker, might also be required
for the normal development of osteoclasts. Therefore, investigation the
status of H3K9me as well as DNA methylation in the mature
osteoclasts and their precursors might shed light on the indispensable
epigenetic mechanisms that involved in the regulation of their
development.

AhR knockout and overexpression mouse phenotypes
Systemic or osteoclast-targeted AhR gene knockout results in

increased bone mass together with reduced bone resorption [28-30],
whereas osteoblast-targeted AhR knockout does not alter bone
phenotype [29]. Moreover, AhR-overexpressing mice exhibit excessive
bone resorption [31]. Treatment of wild-type (WT) mice, but not
osteoclast-selective AhR−/− mice, with the AhR ligand 3-
methlcholanthrene (3MC) increases bone resorption, thereby reducing
bone mass [29,30]. Such findings suggest that pathological bone
resorption may involve AhR and further implicate AhR as a potential
therapeutic target in the treatment of bone-degrading diseases such as
osteoporosis and rheumatoid arthritis.

Involvement of osteoclast RANKL and AhR in immune
regulation

AhR signaling has been implicated strongly in immune modulation.
Notably, AhR has been shown to affect dendritic cell function and the
balance between regulatory T cells and Th17 cells [3,32,33]. AhR has
been shown to control mast cell differentiation and homeostasis [34]
and to be a positive regulator of osteoclastogenesis in vitro [28,29].
Additionally, AhR expression has been shown to be upregulated in
dendritic cells and macrophages following treatment with immune
response trigger molecules, such as lipopolysaccharide and CpG DNA
[33,35]. Recently, we showed that AhR expression was upregulated in
bone marrow macrophages (BMMs), similar to c-Fos, 24 h after
RANKL treatment. Together with the aforementioned finding that
AhR−/− osteoclastic cells have disrupted RANKL-stimulated
osteoclastogenic signaling, but normal responsivity to M-CSF [23],
these findings suggest that impaired osteoclastogenesis of AhR−/−

BMMs may be consequent to RANKL signaling pathway disruption
(Figure 1A).

Figure 1: A simplified model for how AhR mediates RANK/c-Fos signaling axis of osteoclast differentiation and bone resorption. (A) The
expression of AhR in bone marrow-derived osteoclasts was upregulated by RANKL at an earlier stage than the expression of signature
osteoclast genes. (B) Osteoclast differentiation via AhR signaling pathway were also regulated in a RANKL/c-Fos-dependent manner. In
addition, ligand activation of AhR by the smoke toxin, benzo[a]pyrene (BaP), exacerbated osteoclast differentiation in a receptor-dependent
manner. AhR-dependent regulation of mitochondrial biogenesis in osteoclasts was also observed. (C) AhR−/− mice exhibited impaired bone
healing with delayed endochondral ossification. Taken together, the present results suggest that the RANKL-AhR-c-Fos signaling axis plays a
critical role in osteoclastogenesis, thereby identifying the potential of targeting AhR to treat pathological, inflammatory, or metabolic
disorders.
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AhR mediates c-Fos activation in osteoclastogenesis and
BaP-induced bone loss
There have been conflicting several reports on the induction of c-

Fos by AhR ligands in mammals. One is that AhR ligands repress the
E2-induced expression of c-Fos [36], the other is that AhR ligands
themselves induce the expression of c-Fos [37]. It has also been
reported that a time-course chromatin immunoprecipitation assay
indicated that ER-α, AhR and p300 were recruited to c-Fos promoter,
presumably upon the binding of 3MC to AhR in MCF-7 cells [38].

In osteoclast differentiation, RANKL activates c-Fos [39], which
triggers the expression of NFATc1 [40]. Examining whether AhR plays
a role in RANKL/c-Fos/NFATc1 osteoclastogenesis, we found that,
compared to control BMMs, BMMs induced to express c-Fos by
retroviral gene transfer exhibited a dramatic increase in the number of
multinucleated osteoclasts [23]. In the same study, we also showed that
RANKL stimulation of BMMs failed to induce osteoclast
differentiation in the absence of the AhR–c-Fos complex. These
findings provide strong evidence in support of the hypothesis that AhR
plays an important role in c-Fos mediated regulation of osteoclast
differentiation.

AhR ligands, including the smoke toxin BaP, stimulate
osteoclastogenesis through activation of Cyp1 enzymes [9-12,28]. BaP
exposure increases c-Fos levels in RANKL-stimulated WT BMMs, but
fails to induce c-Fos expression in AhR−/− BMMs [23]. These findings
provide hints regarding the relationship between smoking and bone
metabolism, provide insight into c-Fos–AhR-axis-mediated
osteoclastogenesis, and support the pursuit of AhR-targeted therapies
for osteoporosis (Figure 1B).

Control of mitochondrial biogenesis via AhR signaling
Reactive oxygen species released from mitochondria stimulate

osteoclast differentiation by inducing Ca2+ level oscillations and
NFATc1 activation [41]. Mitochondrial biogenesis during osteoclast
development requires peroxisome proliferator-activated receptor-
gamma coactivator 1β (PGC-1β), a key mitochondrial oxidative energy
metabolism factor [42-47]. Recent experimental results have shown
that RANKL induction of PGC-1β mRNA and protein expression is
suppressed in AhR−/− cells [23]. Additionally, the AhR−/− mouse
phenotype includes defective calcium signaling and mitochondrial
function leading to mast cell deficiency as well as enhanced
intracellular reactive oxygen species and apoptosis [34]. Lack of AhR
also diminishes basal mitochondrial biogenesis in osteoclasts [23].
Together, these findings indicate that AhR may play an important role
in mitochondrial biogenesis (Figure 1B).

AhR in bone healing
Fracture healing is a complex process that requires the coordinated

interplay of many cell types, growth factors, extracellular matrix
components, and mechanobiological input. In non-stabilized fractures,
healing occurs via generation of a periosteal callus that bridges the
fracture site. AhR involvement in bone repair has been examined in a
semi-stabilized fracture-healing model, wherein an early inflammatory
phase is followed sequentially by a soft callus reparative phase, a hard
callus phase, and a bone-remodeling phase that can last several weeks
[48]. In a study employing this semi-stabilized, fracture-healing model,
AhR−/− mice were found to have impaired endochondral bone healing
relative to WT mice [23], suggesting that AhR may play an important
role in bone fracture healing. In particular, the callus tissue in AhR−/−

mice contained a greater amount of cartilage for a longer period time,
and the mice suffered from defective long-term bone remodeling.
Compared with WT calluses, reduced bone remodeling was
accompanied by a reduction in the number of tartrate-resistant acid
phosphatase-positive cells in AhR−/− calluses [23]. Notably, the
inflammatory response to fracture is delayed in mice lacking
cyclooxygenase-2 or TNF-α receptors [49,50]. These findings are
consistent with the notion that AhR may be involved in various
inflammation-driven disorders, ranging from septic shock to psoriasis
and rheumatoid arthritis [51-53].

In addition to their well-known resorption activity in bone
remodeling, osteoclasts may also regulate the formation of new bone
[54,55]. Despite their abnormal bone repair following injury and
increased local metabolic demands, AhR−/− mice do show normal
bone formation under basal conditions (Figure 1C). A convergence of
recent findings indicates that early osteoclast differentiation involves
cooperative actions of AhR and c-Fos, and that AhR may control bone
remodeling through the regulation of osteoclast differentiation. Future
studies should explore the therapeutic potential of AhR-targeted
therapy for support of fracture repair.
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