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Abstract

In crustaceans the growth of the animal occurs by shedding of old exoskeleton and formation of new exoskeleton.
Immediately after ecdysis the newly synthesized cuticle up takes water to expand new exoskeleton thereby size.
Molt cycle in crustaceans is under the control of several regulatory hormones, internal and external factors. The
predominant hormones molt inhibiting hormone (MIH) and ecdysteroids act in a controversy manner to one another
in regulation of molt. It is also identified that the methyl farnesoate (MF) induces molting by inducing the synthesis
and release of ecdysteroids from Y-organs. Besides several other hormones and internal molecules like opioids and
neurotransmitters along with toxicants (xenobiotics, chemicals and metals) are also involved in the regulation of
crustacean molting. Toxicity of aquatic pollutants leads to retardation of growth and delays molting, besides
influence mortality and causes huge loss to crustacean farming. This review presents the advances in the field of
crustacean molting and its regulation.
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Introduction
Crustaceans especially crabs are rich in protein and also known as

poor man's protein. Worldwide population was increasing year by year
and feeding billion people through aquaculture. So crustacean rearing
has become significant and developed culture methods. On the other
hand crustacean industry has its own complications like availability of
quality yield etc., in addition to lack of ways to enhance the growth of
animal. In crabs the vegetative growth (somatic growth instead of
reproductive) of the animal is regulated by special process called
molting that is shedding of old exoskeleton and synthesizing of new
exoskeleton, which is required for ever growing body size. In natural
molt cycle animal is allowed to undergo molt and varies depends on
species, season and is mediated by Ecdysteroids secreted from Y-organ
(YO) [1]. Molting cycle takes nearly 120 days. In order to reduce the
molt duration nowadays induced molting is practiced. One of the
classical methods employed for induced molting is by eyestalk
ablation-unilateral bilateral extirpation of eyestalk. This eyestalk
ablation shut downs all the inhibitory hormones of molting and allows
animal to molt.

An inhibitory hormone that regulates molt belongs to CHH family
neuropeptides are synthesized from neurosecretory cells, located in
medulla terminalis X-organ (XO) Sinus gland of eyestalk. Among the

inhibitory hormones, Molt inhibiting hormones (MIH), a type II
peptide secreted from XO sinus gland suppresses ecdysteroid synthesis
by YO[2].

In addition to above limitations of molting, one of the most
prevailing problem nowadays is contamination of harmful chemicals
lead (Pb) copper (Cu), Zinc (Zn) etc. due to urbanization increased the
use of these metals in various ways. Several publication evidences
clearly state the chemicals released into water bodies. As it sediments
in fatty tissues because of high lipophilicity of organ chlorine. Some of
compound as polychlorinated biphenyls, DDT, HCB are observed to
get incorporated in fatty tissues as observed in shore crab C. maenas.
Heptachlor epoxide, dieldrin, endosulfan, chlorane, DDT and
metabolites HCHs were found to accumulate in C. granulate [3].

Endocrine Regulation of Molting
The neurosecretory system of the ES consists of a group of

peptidergic neurons clustered in the medulla terminalis X-Organ
(MTXO) and their bulbous axonic terminals that constitute the SG,
which is a neurohemal organ that releases a number of peptide
hormones into the hemolymph [4]. Molting in decapod crustaceans is
controlled by the eyestalk X-organ/sinus gland complex, which secretes
molt-inhibiting hormone (MIH), a neuropeptide that inhibits
ecdysteroid production by a pair of Y-organs (YOs) located in the
cephalothorax [5] and serves as the linkage between neurological
signaling and steroidal control of processes such as molting and
embryo development [6], CHH (crustacean hyperglycemic hormone)
were identified from American lobster (H. americanus) that
contributed to regulating carbohydrate metabolism [7]. However, one
hormone also contributed to the regulation of molting [7]; while, the
other stimulated oocyte maturation [8]. MOIH (mandibular organ
inhibiting hormone) negatively regulates the secretion of methyl
farnesoate from the mandibular organ and its associated regulatory
activities and GIH (Gonadal inhibiting hormone) also called
vitellogenin-inhibiting hormone (VIH) negatively regulates aspects of
gonadal maturation [9]. In addition to the above neuropeptides the XO
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sinus gland and the neurotransmitters like Xanthurenic acid, 3-
hydroxy L-kynurenin and serotonin. Thus the process of molting is
under the control of eyestalk peptide hormones secreted by XO sinus

gland [1]. The involvement of eyestalk peptides and other molecules
secreted by eyestalk on regulation of molting is described below as
shown inFigure 1.

Figure 1: General Scheme to summarize the results concerning neuropeptide hormones from eyestalk and their mode of action on ecdysteroid
synthesis by Y-Organ from cholesterol. CHH - Crustacean hyperglycemic hormone, MIH-molt inhibiting hormone, VIH-vitellogenin/gonad
inhibiting hormone, MOIH-mandibular organ inhibiting hormone, Extra eyestalk factor-RPCH- red pigment concentrating hormone (RPCH)
and PDH. XA-xanthurenic acid. Cholesterol synthesis pathway involves StAR-steroidogenic acute regulatory protein, cytP45-cytochrome
P450.

Role of molt inhibiting hormone (MIH) on molting
The surgical extirpation of the eyestalk ablation results in a

shortened molt cycle interval, while the implantation of the eyestalk
ablation contents restores this interval. A factor has been implied that
normally inhibits the molting process and it has been named the MIH.
It belongs to class II peptide and separated into two subgroups A and
B. Subgroup A acts physiologically as MIH, B regulates gonadal
maturation in addition to molting in Callinectes sapidus [10]. Main
function of MIH is to regulate ecdysteroid pathway by inhibiting
conversion of ketodiol and 25 deoxyecdysone by binding to receptors
on epidermis of YO [5]. MIH induces an increase in cAMP and cGMP,
with subsequent activation of protein kinases in YOs in vitro; a small
transient increase in cAMP may precede a larger sustained increase in
cGMP [11]. It mediates inhibition of ecdysteroids from YO by binding
to receptor guanylyl cyclase cGMP [12,13]. The effect of the aptly
named MIH on YOs has been investigated in many decapod species,
including the European shore (green) crab (Carcinus maenas), the
blackback land crab (Gecarcinus lateralis), and the South African spiny
lobster [14-16]. MIH levels alter on molt, significantly low on premolt
and rises during post and intermolt stages.

Responsiveness of YO to MIH differs through molt stage. Whereas,
Ca++ increase during premolt and enhance the activation of two intra
cellular enzymes, protein kinase C and phosphodiesterase (PDE). Both
PKC and PDE stimulate the increase of ecdysteroid levels on premolt
stage. But this is reversed on incubation of YO with inhibitor of PKC
and PDE IBMX which authentically supress ecdysteroid secretion and
drops their levels at postmolt stage and intermolt stage [17]. But this is
reversed on addition of Calcium ionosphere (A23187).

Role of Ecdysteroids on molting
Crustaceans appear to have the same enzymes for ecdysteroid

biosynthesis as insects. An inhibitor of steroid 5-reductase, L-645390,
blocks the conversion of cholesterol to 7DC in the YO of M.
mercenaria [18]. The 5-reductase that converts 4-diketol to 5-diketol is
a cytosolic enzyme in YO cells that requires NADPH for activity [19].
Orthologs of nvd, nmg/sro, spo, phm, dib, sad, and shd have been
identified in the Daphnia pulex genome [20-22], and a cDNA
encoding Phm has been cloned from Kuruma prawn, Marsupenaeus
japonicus [23]. Nvd and spo are located adjacent to each other in the
D. pulex genome [20]. The M. japonicus Phm and D. pulex Phm have
five conserved motifs present in insect Phm (WxxxR, GxE/DTT/S,
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ExxR, PxxFxPE/DRF, and PFxxGxRxCxG/A heme-binding motif), five
of six substrate recognition sites (SRS 1, 2/3, 4, and 5), and N-terminal
ER-targeting and Pro/Gly-rich sequences [23]. Mj-Phm is a target of
eyestalk neuropeptides, as its expression in the YO is increased as
much as 7-fold during premolt and is decreased about 2.5-fold by sinus
gland extract and recombinant MIH [23]. None of the crustacean
Halloween enzymes have been characterized biochemically.

A member of the clade 4 of cytochrome P450 enzymes has been
cloned from O. limosus (CYP4C15) and C. maenas (CYP4C39)
[24,25]. Both genes encode proteins with hydrophobic N-terminal ER-
targeting and Pro/Gly-rich sequences characteristic of microsomal
cytochrome P450 enzymes [24,25]. CYP4C15 is expressed in the YO
and the protein is associated with the ER [24,26]. Moreover, CYP4C15
expression in the YO is increased during premolt and is decreased by
MIH [24,26]. These data suggest that they are involved in ecdysteroid
biosynthesis.

Major ecdysteroids identified in crustaceans are of ecdysone (E),
20-OH-E (20-hydroxyecdysone), PoA (PonasteroneA), 25dE (25-
deoxyecdysone), 3dE (3-deoxyecdysone). 25dE is the precursor of PoA.
Ecdysteroids varies through molt stages. Experimental evidence shows
that in eyestalk ablated animals levels of 20-OH-E is the major
ecdysteroid present. At early premolt stage the ratio of ecdysone levels
are high compare to 20-OH-E, than to late premolt stage. At late
premolt in the hemolymph the titers of PoA decline more rapidly than
those of ecdysone and 20-OH-E. During postmolt and intermolt stages
20-OH-E and PoA level increases. Between premolt and intermolt YO
also secrete ecdysone and 25dE a precursor to PoA. PoA is an active
molting hormone can be seen throughout all the three stages on
additional to 20-OH-E.

Role of methyl farnesoate (MF) on molting
Methyl farnesoate (MF) is a sesquiterpenoid compound found in

decapod crustaceans, and is structurally similar to the juvenile
hormone (JH) of insects. However, MF differs from juvenile hormone
(JH III) in containing an epoxide moiety at the terminal end.
Crustaceans appear to lack epoxidase and S-adenosyl-methionine-
dependent methyltransferase, which convert farnesoic acid (FA) to JH
III [27]. Therefore, crustaceans lack JH III, and MF is the end product
of sesquiterpenoid biosynthesis. Farnesoic acid rather than MF is the
secretory product from mandibular organ (MO) immediately
converted in to MF by the action of enzyme farnesoic acid O-methyl
transferase (FAOMeT) and is under negative control of MOIH derive
from XO sinus gland complex at the terminal end of the eyestalk [28].
The MOIH peptide hormone suppresses the production of MF. In
insects, JH III is the major hormone related to metamorphosis, gonad
maturation, and molting [29,30].

In M. rosenbergii the levels of MF rise during premolt stage and
decline during postmolt stage [31] and also accelerates molt in P.
clarkii [31] and crab O. senex senex [32]. Olmstead and Leblanc [33]
found antagonist of JH as methoprene decreases molt frequency in D.
magna. This clearly indicates that MF modulates ecdysteroids.

Role of crustacean hyperglycemic hormone (CHH) on
molting

Another eyestalk neuropeptide with MIH activity is the crustacean
hyperglycemic hormone (CHH), which is so named for its role in
elevating glucose levels in the hemolymph [34]. CHH may inhibit
molting in response to certain environmental stresses reviewed [35].

The CHHs are the most abundant neuropeptides in the SG. Their
central role on the regulation of carbohydrate metabolism has been
reviewed [36]. CHH family peptides are the pleotropic hormones with
multifunctional and involves in biological activities like blood glucose
regulation, molting and inhibition of methyl farnesoate synthesis, lipid
metabolism regulation, vitellogenin and ovarian maturation. CHH
amino acid sequence was first determined in species like shore crab C.
maenas. As it is separated into two subgroups A and B. Both the
isoforms A and B have a hyperglycemic effect, in additional to that A
subgroup possess molt inhibiting activity and B subgroup stimulate
oocyte growth [37]. Both their values vary according to molt and
reproductive cycle. In the species like C. maenas CHH shows sequence
homology with MIH. This confirms that CHH has inhibitory effect on
ecdysteroidogenesis even though 20 times slower than MIH. Binding
of CHH to the specific receptor guanylyl cyclase II (GC II) on the
membrane of YO elevated the levels of cGMP and inhibits regulation
of ecdysteroidogenesis [38].

Role of Vitellogenesis/Gonad inhibiting hormone (VIH) on
molting

In crustacean females, the late phase of gonadal maturation to form
mature ova is called vitellogenesis. Usually the inhibitory role of GIH
on vitellogenesis is observed in females, at the same time the
occurrence of GIH in males is also recorded and this provides the
additional role of GIH in males, assumed to be regulating molt [39].
Structural similarities among GIH and MIH in accordance to number
of cysteine residues, their location provide the existence of
homogenesity or similarity [40]. Thus similarity between GIH and
MIH support the hypothesis phenomena of involvement of VIH in
molting. GIH might have a molt-inhibiting function because female
lobsters molt only after hatching of their larvae when the CHH and
GIH hemolymph levels are low in H. americanus [41].

 Molting and reproduction are complex hormone mediated process,
and are also regulated by several other internal and external factors
[42]. The similarity of VIH, GIH with that of MIH confers the
involvement of induction of molting at previtellogenic stage in C.
quadricarinatus [43].

Role of opioids on molting
Mancillas et al. [44] first declared the presence of opioid as small

peptides in various species like spiny lobster Panulirus interruptus, red
swamp, and in crayfish P. clarkia by using various techniques like
immunohistochemistry, RIA, HPLC. Fingerman et al. [45] reported the
presence of two types of peptides methionine-enkephalin and leucine-
enkephalin from neuroendocrine complex of eyestalk of fiddler crab U.
pugilator. Later, based on experimental evidences proved the role of
opioids like methionine-enkephalin as a neurotrasmitter that regulates
the secretion of hyperglycemic hormone in fiddler crab U. pugilator,
movement of red pigment molecules that regulates chromatophores
and on ovarian maturation in U. pugilator. Recently confirmed that
opioids, leucine-enkephalin have another crucial role on regulation of
molting in the fresh water crab O. senex senex (46]. Complete
descriptions of opioids were represented in review [47].

Influence of other eyestalk factors
Role of Xanthurenic acid, 3-OH-K on molting: Biogenic amines and

peptide neuroregulators are known to modulate the release of some
neuropeptide hormones from the SG [48]. These XA and 3-OH-K are
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also secreted by XO sinus gland and fully identified by MS and NMR
and their structures. Among them the 3-OH-K is the circulating form
and which converts into an active XA form by the action of an enzyme
amino transferase [49]. Aminotransferases present in hemolymph,
Eyestalk and YO. The inhibitory action of both XA and 3-OH-K is
studied to mediate through binding their respective receptors present
on the YO [49]. There by suppress the secretion of Ecdysteroids from
YO. By interfering with the synthetic co enzymes like Cytochrome C
(Cyt C) and Cytochrome P450 (CytP450) at the site of iron porphyrin
[50]. But the supressive action of XA, 3-OH-K is studied to differ from
species to species and also in stage specific [51].

Role of serotonin on molting: Serotonin (5-hydroxytryptamine or
5HT) is a neurotransmitter secreted by XO sinus gland of Eyestalk. The
released serotonin is studied to stimulate the release of molt inhibiting
hormone from eyestalk, thus have inhibitory role on molting. The
inhibitory role of serotonin is by stimulating the release of variable
hormones of molting such as PDH, CHH, GSH, MIH [52] and Neuro
depressing hormone. On the other hand it is having suppressive role
on MF secretion at the same time the progression of ovarian
maturation by serotonin was observed in P. clarkia, white pacific
shrimp L. vannamei [53] and tiger shrimp P. semisulcatus [54]. Further
the suppressive role of serotonin on growth was evidenced by where
the shrimp fed with Mannon oligosacharide 3 g kg-1 showed
progressed molting compared with that of shrimp fed with serotonin.
This supports the inhibitory role of serotonin on molting. But more
recently Sainath and Reddy [55] stated that serotonin has no effect on
molting in O. senex senex. Thus in depth and clarification studies are
required in this direction.

MIH Inhibition of Phantom (Phm) Gene Expression on
YO
Though it is well known that the process of molting is regulated by

MIH, unfortunately the exact mechanism of action at gene expression
level of MIH is unknown. Limited results persist regarding the
involvement of Halloween genes and their regulation in molting [23].
YO ecdysteroid synthetic pathway suggest that the P450 mono-
oxygenases, encoded by the Halloween genes Phantom (phm),
Disembodied (dib), Shadow (sad), and Shade (shd) can bind multiple
substrates. Phm apparently can hydroxylate 5β-diketol or 5β-ketodiol
at C25; Dib apparently can hydroxylate 5β-diketol, 3D2, 22dE, 5β-
ketodiol, or 5β-ketotriol at C22; Sad apparently can hydroxylate
3D2dE, 2,25dE, or 2dE at C2; and Shd apparently can hydroxylate
25dE, 3DE, or ecdysone at C20. However, the specificities of the Phm,
Dib, Sad, and Shd enzymes are such that the C25→C22→C2→C20 order
of hydroxylations is maintained [56]. These Halloween genes are
studied to express in various parts of body like prothoracic gland, fat
body, midgut etc. [57]. Unlike in crustaceans, in insects the prothoracic
gland hormone known as prothorasicotropic hormone (PTTH) is
studied for its positive regulation of molting [58]. Further the
identification of Halloween gene orthologues in Daphnia
ecdysteroidogenic pathway [21] represents the involvement of
Halloween genes in molting of crustaceans. Based on the above studies
the involvement of phm genes (Member of Halloween gene family) in
molting and their expression levels at different molt stages were
studied and were observed to regulate in stage specific manner [23].
The expression of phm was confined to YO at all stages of molting
though minor expression was observed in ovaries at mature stages
which was the basis for selecting the phm gene expression as the
limitation in the above studies. The results clearly proposed that the

levels of phm expression were high during pre-molt stages and
expression was suppressed during the intermolt stages, which was due
to the inhibitory action of MIH mediated by binding to the receptors
on YO [23]. On the other hand the expression of phm in insects was
observed in ovary also suggesting that on degradation of pro thoracic
gland during metamorphosis the ovary adopts the function of
ecdysteroidogenesis [59]. In addition to the difference in the
expression levels of phm gene the levels of Cyp4c15 (type of
cytochrome P450) were also regulated though the role of Cyp4c15 in
molting was not known. This provides an idea that the MIH suppresses
the molting by affecting the CYP gene expression in Y-organs. The role
of Halloween genes in insect molting is mediated by initiating the
transcription factor βFTZ-F1 observed in Drosophila [60] Similarly
though the Orthologues of EcR, USP, FTZ-F1 were found in
crustaceans but their possible contribution in molting is not clear and
which needs further research in this direction [61].

Toxicity of Chemicals that Mediated Endocrine
Disruption on Growth

Ecdysteroids regulate aspects of embryo development, growth
(molting), and reproduction (perhaps vitellogenin synthesis).
Accordingly, chemicals that interfere with ecdysteroid signaling have
the potential to elicit profound adverse effects on crustacean
populations. Chemicals with anti-ecdysteroidal activity in crustaceans
have been identified that function as either ecdysteroid synthesis
inhibitors or ecdysteroid receptor antagonists. Chemicals with anti-
ecdysteroidal activity include many of the classic estrogen receptor
agonists of vertebrate. However, studies with ecdysteroid-responsive
insect cells have demonstrated that non-steroidal EcR agonists are rare
[62]. The binding of an environmental chemical to the EcR will more
likely result in inhibition of ecdysteroid signaling.

Testosterone exposure causes abnormal embryo development of
daphnids similar to that observed with fenarimol [63]. Administration
of exogenous 20-hydroxyecdysone protected embryos against this
toxicity of testosterone indicating that testosterone interfered with
normal ecdysteroid signaling. Additional studies indicated that
testosterone elicited anti-ecdysteroidal activity by inhibiting the EcR
[64]. The binding of an environmental chemical to the EcR will more
likely result in inhibition of ecdysteroid signaling.

Among chemicals shown to elicit 20-hydroxyecdysone-like activity
in crustaceans are ponasterone A and RH 5849. Ponasterone A is a
steroid that was first isolated from plants that has high-ecdysteroid
activity in insects [65]. Exposure of D. magna to ponasterone A
stimulated premature ecdysis [66]. RH 5849 accelerated molting; and,
in the barnacle B. amphitrite, RH 5849 enhanced attachment and
metamorphosis of the larvae [67]. Recent development of a crustacean
EcR reporter gene construct may stimulate screening efforts aimed at
identifying chemicals that harbor this activity [68]. Several studies
have reported effects of environmental chemicals that are consistent
with interference with ecdysteroid signaling, though a precise
mechanism of action was not established. The chemicals 4-
nonylphenol [69], propiconazole [70], and bisphenol A [71], have
elicited effects in crustaceans consistent with anti-ecdysteroidal
activity. The fungicides propiconazole [72] and fenarimol [73] inhibit
cytochromeP450 (CYP) enzymes that are critical to ecdysteroid
synthesis. Both of these chemicals may inhibit ecdysteroidsynthesis
through this enzyme inhibition. The 4-Nonylphenol is an antagonist of
the insect ecdysteroidreceptor in vitro [62]. Bisphenol A was proposed
to elicit anti-ecdysteroidal activity through a receptor cross-talk
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mechanism [71,74]. Thus, it is mechanistically plausible that all of
these compounds elicit toxicity to crustaceans via perturbations in
ecdysteroid signaling. Relatively few studies have been performed that
evaluated perturbations in ecdysteroid signaling in crustaceans by
xenobiotics.

Axenobioticis a foreign chemical substance found within an
organism that is not normally, naturally produced by or expected to be
present within that organism and which affects the organism. In this
regard the crustacean industry nowadays facing many problems due to
increasing urbanization day by day i.e. contamination of water bodies
by harmful pesticides, metals, plastic and sewage, from agriculture and
industrial activity which are getting assimilated and affecting the
normal physiological process of aquatic organism as shown in (Figure
2). Various estrogenic compounds such as Arochlor 1242, PcB29, DES,
endosulphan, diethyl phthalate and are detected in the fatty tissues and
are studied to affect molting [75]. It is found to effect or delay molting
either by disrupting the synthetic pathway of chitin of exoskeleton by
degrading the enzyme chitobiase (N-acetyl-β-glucosaminidase) or by
disturbing the ecdysteroid receptor axis (EcR) which heterodimerize
with crustacean retinoid X receptor (RXR) [76] an central event in
molting.

Figure 2: Effects of toxicants on endocrine disruption.

Adverse effects of some of Pesticides such as Organochlorine
compound DDT, PCB, HCHs on molting were studied and found to
accumulate in tissues of burrowing crabs C. granulata [77]. On the
other hand no effect on molting on exposure of carbamate, Malathion
and parathion and progressive molting on exposure to DDT was
studies in U. pugilator.

Diflubenzuron (Dimilin) a chitin inhibitor was found to increase
mortality near ecdysis on exposure to higher concentrations [78]. Baer
and owens [79] investigated that Aroclor 1242, 2,4,5-trichlorobiphenyl

(PCB29), diethylpthalate and Methoxyclor decreases chitobibiase
activity at epidermis and results in inhibition of molting in D. magna
(Snyder and Mulder, 2001). Delay in molting by various pesticides
Heptachlor in H. americanus [80] and dioxins, dibenzofurans, benzene
and dimethylnapthalene in C. sapidus are also reported. Similarly
Feeding with 2,3,7,8-TCDD dioxin found to retards regeneration and
molting in C. sapidus. Some endocrine modulators, estrogenic agents
like DES and endosulfan are observed to delay the molting in
Cladoceran. Diet containing sodium pentachlorophenate, 2,4,5-
trichlorophenol or 2,4,6-trichlorophenol was found to retards limb
regeneration, in Palaemonetes pugio but does not alters molt cycle
[81].

 Though metals such as sodium, potassium, calcium and
magnesium are required for normal physiological functions of
organism some heavy metals like cadmiun, zinc, mercury, manganese,
chromium, cobalt, nickel and selenium are very toxic to flora and
fauna. Heavy metals are observed to interfere with the biochemical
events involved in physiological process. These heavy metals interfere
with hormones and manipulate their release and thus affect the
physiological events like molting, limb regeneration, blood glucose
levels and reproduction. In crayfish Astacus leptodactylus exposure to
cadmium caused impairment of nuclear pycnosis, mitochondrial dis
organization, abnormal development and collapse of Golgi vesicles and
fragmentation of endoplasmic reticulum by accumulating in central
nervous system, thus affecting the normal physiological metabolism
[82]. On exposure of cadmium results delayed molt in eyestalk
ablation C. granulata [83] and P. clarkii [84]. On feeding 10 ppm
cadmium for 10 days caused damage to neurosecretory cells in brain
eyestalk ganglia and also observed that males developed resistance
when compared to females [85]. Cadmium when fed in combination
with lead and mercury got accumulated in the brain and inhibited
central nervous system, sensory ganglia, and sulphydryl group
containing enzymes in crayfish P. clarki. Zinc is also observed to have
profuse effect on limb generation when combined with methyl
mercury than alone and in combination with cadmium.

In addition to the effects of cadmium and zinc other heavy metals
like Selenium delays molting in Daphnia magna, arsenic (in the form
of CCA: (chromated copper arsenate) retarded regeneration in U.
pugilator in a dose dependant manner, chromium affects the
neurosecretory cells in brain and thoracic ganglian of the shrimp,
Penaeus monodon and Lead, retards limb regeneration and molting of
U. pugilator are also reported.

Organometallic compound Tributyltin (TBT) extensively used in
antifouling paints also retards molting and produces abnormalities in
regenerates. It gets interfered in the calcium reabsorption, an essential
event in the molting and inhibits the exoskeleton formation as
observed in C. rajadhari [86]. Reddy et al. [87] found the impact of
TBT at initial and final stages of limb regeneration in freshwater prawn
C .rajadhari. Further Reddy et al. [88] proposed that low dosage of
TBT will not show any effect on first two molts, it shows significant
changes after third molt.
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