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Abstract

Cyclin dependent kinase (CDK) plays a major role in regulating the cell dynamic. Kinases are present in all known
eukaryotes and their regulatory function pathway was evolutionary conserved, suggesting this pathway plays a
dominant role in cell growth control and its disruption may result in cell death. Three-dimensional quantitative
structure-activity relationships (3D-QSAR), molecular docking and molecular dynamics (MD) simulation strategies
were applied to investigate the molecular interaction between active ligands and cyclin dependent kinase 2 (CDK2).
A QSAR model was computed using artificial neural network (ANN) regression, with a good predictive ability in
internal and external validation. Results were compared with the prototype inhibitor of CDK, Staurosporine. A mixed
analysis embodying the QSAR model, molecular docking and molecular dynamics, enabled the pharmacophore high
definition. Data provided by MD were highly consistent with the findings of 3D-QSAR model.

Keywords: 3D-QSAR; Low molecular dynamics simulation;
Conformational analysis; Molecular docking; CDK2 inhibitors;
Staurosporine

Introduction
Screening a large domain of chemical space for a certain compound

shape proved to be a valuable tool in identifying compounds with no
evident structural similarity but with affinity for the same binding site
of a proteic structure. Compounds resulted after such a process can, by
functionalization and derivatization, be “shaped’’ to mimic structural
similarity, thus becoming, by the QSAR paradigm, same or, hopefully,
better bioactive, or enhanced in drug-like properties. A QSAR model
can be used first to find a representative compound in a data set used
to build the model. This compound looked at as the least common
multiple (i.e., common pharmacophore) can further be used as a lead
structure in similar shape screening. The dissociation constant Kd of
the complex ligand-protein can be predicted by the QSAR model. It is
also possible that one structure to act on multiple receptors, or to
interact with multiple binding sites, located on the same or distinct
molecules, such as Staurosporine, able to inhibit protein kinases of
different types. Staurosporine (antibiotic AM-2282 or STS) was first
isolated in Streptomyces Staurosporeus.

It’s main biological activity is the competitive binding to protein
kinase, against ATP, being a model of ATP competitive kinase
inhibitor; however, its great affinity for many CDKs, in other words, its
lack of specificity, prevented Staurosporine from clinical use [1].
Despite the progress in discovering more drug-like inhibitors of CDK2,
there is still some chemical space available for potent and selective
inhibitors of CDK2. Difficulties lie in achieving isomorphic specificity
[2], targeting to specific cells or tissues and ensuring correct degree of
inhibition [3]. So far, the interaction between CDK2 and ligands is not
completely understood, and related mechanism not yet explained. The
large variation in binding affinities of these compounds with CDK2
and the relation of biological activity with the flap motion of the

enzyme, as well as, with conformational changes in the catalytic site of
CDK2, were investigated using a combined approach including
docking and molecular dynamics simulations. The activity data were
retrieved from an original series of 264 compounds [4], obtained by
isothermal titration calorimetry [5] (ITC) against CDK2; compound
structures were curated as follows: only highly active compounds were
considered, with Kd <10.000 nM; structural isomers were not
considered. Following these steps, 26 final compounds resulted. The
above selection was done for obtaining a model based on non-
congeneric compounds in order to expand the chemical space;
however, the inactive compounds were not considered in the
construction of the model. CDK molecules contain a Walker A motif
[6] or a P loop associated with a phosphate group. The Walker a motif
is present in ATP and GTP binding proteins. The manner of how this
loop is important in binding a compound and is investigated in this
study.

Methods
A data set of 26 molecules with measured Kd(nM) on human cyclin

dpendet kinase 2 were used to compute a QASR model by ANN
regression method. Target variable was set as Kd(nM). Dependent
variables were as follows: potential energy (kcal/mol), molecular
weight (MW), AlogP, polar surface area (PSA), molecular radius (MR),
molecular polarity, first Zagreb index (ZI1) [7], Wiener index [8], Xu
index [9], Gutman topological descriptor (GTM=ZI2) [10],
Eccentricity (ECC) [11], Lipinski’s roule of five values [12], and also
total connectivity index. Docking study was performed using
AutoDock package [13]. 1QA1 PDB id was chosen as a model for
CDK2 receptor. Docking site was retrieved from literature and from
the model mentioned above [14]. Furthermore, the structure was
prepared by the Protein Preparation Wizard in the Schrödinger
software suite, including hydrogen atoms, correcting partial charges
using the OPLS_2005 force field and generate protonation states, and
in vacuum structure energy minimization. Co-crystal ligand was
removed, and the resulting protein model was used as the receptor
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model in the studies. The 26 structures with experimental determine
activities (Kd data) are shown in Table 1. Ligprep module incorporated
in Phase was used to prepare the compounds, and compute of the
probable ionization state at pH 7.4 ± 0.2. Phase 3.0 package was used
to generate the pharmacophore for CDK2 inhibitors. Desmond was
used to perfomed the molecular dynamic study using OPLS_2005
force field. The prepared structures were used to generate a
pharmacophore model using their biological activity measured in Nm.
Ligands were set as active

The data set was divided in a training and test set, respectively,
considering a uniform distribution of Kd values in training and test
sets. The pharmacophore of these compounds was rationalized from a
set of six pharmacophore characteristics: negatively charged group (N)
positively charged group (P) and aromatic ring (R) hydrogen bond
acceptor (A), hydrogen bond donor (D), hydrophobic group (H). Each
pharmacophore feature was defined by a set of chemical structure
characteristics. Pharmacophore was explain by the type, location and
directionality of each component [15]. Several pharmacophore
hypothesis were generated. The hypotheses were ranked according to
the following scores: alignment, vector score and a volume score
respectively. The predictive power of the QSAR model was validated by
the test set compounds externally and internally. Chemical space of
activity was also represented in parallel for the observed dissociation
constant (Kd) and predicted dissociation constant (Kdp). Balaban
index [16], total valence connectivity, Log P and polar surface area
(PSA) were used to generate a 3D wire frame surface plot.

Two compounds were chosen for a comparative study: (i) the
compound with the best expermentaly determine Kd and (ii)
Staurosporine. Conformational analysis of the two molecules together
with low molecular dynamics applied to CDK2 complex with the
compounds was performed. Conformational analysis was used to
characterize the regions of the compound exposed to the solvent and
present high mobility comparative with the rest of the molecule. In this
respect, by rotating the atoms residue around the molecule with 1
degree of freedom, -180 + 180 degrees, a graph containing
conformational energies of the structure is obtained. This graph is used
to make assumptions regarding compound binding. Low molecular
dynamic [17,18] is a technique for observing discrete changes in
structure of proteins especially regarding the residues present in
binding sites. In this technique, a molecular dynamic is performed on a
molecule having the amino acids of the active zone fully flexible, the
neighboring residues fixed and distant residues being inert. Two steps
were adopted: (i) molecular 3D-similarity indices were computed (for
the 26 structures whose activity had been experimentally reported in
Table 1) in view of 3D-QSAR study; (ii) docking and molecular
dynamics (MD) simulation were performed in order to explore
favorable coordinates of the CDK2 inhibitors in docking as well as to
understand the large variation in the binding affinities of those
compounds with CDK2.

Results
20 hypotheses were produced and analyzed. After analyzing active

ligands alignment and the generated hypotheses, hypothesis
AADRR19 was selected. The selected hypothesis contained one
hydrogen bond donor (D4), two hydrogen bond acceptors (A2 and
A3), and two aromatic rings (R10 and R12), as shown in Figure 1.

Figure 1: (a) Common Pharmacophore for active ligands.
Pharmacophore features are color coded: blue H-donor, pink H-
acceptor, orange aromatic ring; (b) Distance between
pharmacophore features are shown in Ångstroms.

QSAR, obtained independentely of pharmacophore model
generated using Schrodinger software, has the following statistical
parameters: The training set Pearson R2=0.9838, with a mean standard
error MSE=0.446 (see the plot in Figure 2). Descriptors that have high
impact on model building were PSA of compounds followed by
potential energy of the compounds and AlogP respectively. Topological
descriptors used have a modest contribution to the model. From all
MW and polarity had the modest contribution in model architecture.
General model equation y=0.8674x+270.92 where y is the target
variable, x a certain dependent variable.

Figure 2: Plot of the observed dissociation constant (Kd) vs model
predicted dissociation constant (Kdp)

Kd MW AlogP PSA MR P ZM1 W Xu Ram GMT ECC PE

MW 0.862 0.9 0.976 0.973 0.977 0.963 0.981 0.922 0.978 0.978 0.28

AlogP 0.862 0.604 0.821 0.844 0.856 0.828 0.808 0.908 0.834 0.755 0.42

PSA 0.9 0.604 0.89 0.839 0.83 0.916 0.894 0.712 0.917 0.963 0.12
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MR 0.976 0.821 0.89 0.985 0.96 0.93 0.994 0.844 0.938 0.969 0.18

P 0.973 0.844 0.839 0.985 0.99 0.893 0.993 0.896 0.915 0.94 0.24

ZM1 0.977 0.856 0.83 0.96 0.99 0.894 0.979 0.943 0.924 0.0.932 0.32

W 0.963 0.828 0.916 0.93 0.893 0.894 0.92 0.848 0.995 0.968 0.25

Xu 0.981 0.808 0.894 0.994 0.993 0.979 0.92 0.871 0.937 0.971 0.21

Ram 0.922 0.908 0.712 0.844 0.896 0.943 0.848 0.871 0.883 0.83 0.53

GMT 0.978 0.834 0.917 0.938 0.915 0.924 0.995 0.937 0.883 0.976 0.28

ECC 0.975 0.755 0.963 0.969 0.94 0.932 0.968 0.971 0.83 0.976 0.19

PE 0.282 0.419 0.122 0.178 0.242 0.315 0.25 0.209 0.53 0.28 0.2

Table 1: Descriptors correlation matrix: Kd-dissotiation constant (nM), MW-molecular weight, AlogP-partition constant, PSA-polar surface area,
P-polarity, ZM1-first Zagreb index, W-Wienner index, Xu-Xu index, Ram –ramification index, GTM1-Gutman molecular topological
descriptor1, ECC-Eccentricity, PE-potential energy.
Discret equation of descriptors for the target variable (y) correlation y=PE*0.00234096 + 0.11584, y=MW*0.00252934 - 0.388785,
y=AlogP*0.178285 + 0.128918, y=PSA*0.00655576 - 0.278792, y=MR*0.0101536 - 0.457824, y=P*0.020245 - 0.361666, y=ZM1*0.00655738 -
0.359016, y=W*0.000183697 + 0.0461768, y=Xu *0.0411207 - 0.471759, y=GMT*4.16536e-05 + 0.0495158, y=ECC*0.00186047 - 0.0469767.

Predicted activities of the observed and test set molecules are also
listed in Table 2.

Molecule Kd Kdp Lipinski rule of 5

1 O=C(C1=CC=C(C(O)=O)C=C1)NC(=C2)NN=C2C3CC3 5600 5300.54 271.096; 4; 3; 5; 2.18

2 O=S(=O)(NCC[NH](C)C)C(=CC=1)C=CC=1N=CC2C=3C=CC=CC=3NC2=O 840 61.653 386.141; 5; 2; 7; -0.087

3 O=C1NC2=CC=C3N=CSC3=C2C1C=NC(=CC=4)C=CC=4S(=O)(O)=NC(=O)C 194 539.074 414.046; 5; 2; 4; -0.942

4 O=C1NC2=CC=C3N=CSC3=C2C1C=NC(=CC=4)C=CC=4S(=O)
(=O)NC=5C(OC)=CC=CC=5OC

179 65.1354 508.088; 7; 2; 7; 1.833

5 O=C1NC2=CC=C3N=CSC3=C2C1C=NC=4C=C5CS(=O)(=O)CC5=CC=4 36 193.489 383.04; 5; 1; 2; -1.044

6 O=C1NC=2C=CC=CC=2C1C=NC(=CC=3)C=CC=3S(=O)(=O)NC(=N)N 210 1240.24 357.09; 6; 4; 5; -1.729

7 O=C1NC=2C=CC(C(=O)OCC(C)C)=CC=2C1=NNC(=CC=3)C=CC=3S(=O)(N)=O 47 95.4378 416.115; 6; 3; 7; 2.055

8 O=C(NC=1NN=C(C2CC2)C=1)CC(=CC=3)C=CC=3OCC[NH]4CCCC4 44 -331.264 354.206; 5; 2; 9; 2.986

9 O=C1NC=2C=CC(C(=O)O)=CC=2C1=NNC(=CC=3)C=CC=3S(=O)(N)=O 8 2445.64 360.053; 6; 4; 4; 0.372

10 NC(S1)=NC(C)=C1C(N=2)=CC=NC=2NC(=CC=3)C=CC=3N(C)C 190 48.7439 326.131; 6; 2; 4; 3.222

11 ClC(=C1)C(N(C)C)=CC=C1NC(=N2)N=CC=C2C=3SC(C)=NC=3C 45 323.486 359.097; 5; 1; 4; 4.732

12 O=N(O)C(C=1)=C(N(C)C)C=CC=1NC(N=2)=NC=CC=2C=3SC(C)=NC=3C 62 13.1525 371.129; 6; 2; 5; 0.656

13 N#CC(=C1)C=CC=C1NC(=N2)N=CC=C2C=3SC(C)=NC=3C 161 56.4688 307.089; 5; 1; 4; 3.285

14 O=N(O)C(C=1)=CC=CC=1NC(N=2)=NC=CC=2C(S3)=C(C)N=C3NCC=C 54 2.1458 369.113; 6; 3; 7; 1.345

15 O=N(O)C(C=1)=CC=CC=1NC(N=2)=NC=CC=2C=3SC(C)=NC=3C 73 288.23 328.087; 5; 2; 4; 0.491

16 FC(=CC=1)C=CC=1NC(=N2)N=CC=C2C=3SC(C)=NC=3C 121 -399.515 300.084; 5; 1; 3; 3.946

17 ClC(=CC=1)C=CC=1NC(=N2)N=CC=C2C=3SC(C)=NC=3C 151 -403.74 316.055; 4; 1; 3; 4.516

18 O=C1NC2=CC=C3NNN=C3C2=C1N=NC(=CC=4)C=CC=4S(=O)(=O)N 191 1667.32 357.064; 8; 4; 3; -0.995
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19 O=C(N1)C(=NNC2=CC=C(S(=O)
(N)=O)C=C2)C(C=3)=C1C=CC=3C(=O)NCC4=C(OC)C=CC=C4OC

23 79.8934 509.137; 8; 4; 9; 1.324

20 O=C1NC=2C=CC(C(NCCC3=CN=CN3)=O)=CC=2C1=NNC(=CC=4)C=CC=4S(=O)
(=O)N

251 241.264 453.122; 8; 5; 8; -0.956

21 O=C(NC1=CC(C2CC2)=NN1)CC(=CC=3)C=CC=3C=4SC=CC=4 79 351.827 323.109; 3; 2; 6; 4.267

22 FC(F)(F)OC(=CC=1)C=CC=1CC(=O)NC(=C2)NN=C2C3CC3 463 766.564 325.104; 7; 2; 7; 3.321

23 BrC(C=C1)=CC=C1C(=O)NC(=C2)NN=C2C 4090 3833.97 279.001; 3; 2; 3; 2.734

24 O=C(C1=CC=C(C(N)=O)C=C1)NC(=C2)NN=C2C3CC3 362 1456.82 270.112; 4; 3; 5; 1.03

25 O=C(CCC)NC(C=1)=NNC=1C2CC2 360 854.64 193.122; 3; 2; 5; 1.813

26 NC(=N1)N=CC=C1C=2SC(C)=NC=2C 30300 26533.1 206.063; 4; 1; 1; 1.129

Table 2: Molecules used in building QSAR model for CDK2 inhibitors. Smiles, Dissociation constant Kd (in nM), predicted dissociation constant
Kdp (in nM) and Lipinski’s rule of five (from left to right): molecular mass in Daltons, number of H donor groups, number of H accepting groups,
number of rotatable bounds, and octanol-water partition coefficient.

As shown in Figure 1, the presence of two H-acceptor groups, two
aromatic rings and one H-donor group is mandatory for the inhibitory
effect on CDK2. By superimposing the common pharmacophore
model on the best hit (compound #9) one observes that both
coordinations of H-acceptor groups are the same. Also by
superimposing the best hit #9 over #26, with the lowest Kd, one
observes that #9 has six H acceptor groups, four H-donor groups, two
hydrophobic groups and two hydrogen bound forming groups,

compared with three H acceptor groups, two H donor groups, two
hydrophobic groups, and two aromatic groups, for #26. By increasing
the number of H acceptor groups and the distance between
hydrophobic and aromatic groups, larger Kd values are observed. Also
orientation/alignment of ligand in the binding site is crucial. Figure 3
illustrates superposition of #9 over the common pharmacophore
comparative to #26; one observes a difference of 90o between
orientation of #9 and #26, respectively.

Figure 3: (a) Ligand 9 with H acceptor groups in pink, H-donor groups in blue, aromatic rings in orange and hydrogen bound forming groups
in green; (b) ligand 9 superimposed with the commonest pharmacophore; (c) ligand 9 in blue superimposed with ligand 26 in red.

Chemical space of activity, represented in topological terms, showed
similar coordinates for Kd and Kdp (represented using Balaban index,
a highly discriminating index) and total valence connectivity.
Chemical space of drug like properties represented using polar surface
area and Log P shows the same shape as the topological space (Figures
4 and 5).

Figure 4: Surface plots of dissociation constant, experimental (Kd)
left and predicted (Kdp) right, vs Balaban index and total valence
connectivity.
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Figure 5: Surface plots of dissociation constant, experimental (Kd)
and predicted (Kdp) vs polar surface area (PSA) and Log P.

Compound #9 in complex with CDK2 was compared with the
crystallographic structure of the CDK2 complex with inhibitor
Staurosporine.

Figure 6: a Compound #9 (left) and b Staurosporine (right) in
CDK2 binding pocket; binding pocket configuration of #9 was
obtained by docking it with CDK 2 structure, retrieved from 1QA1
using the same binding site; best rank pose is represented.
Staustosporin in complex with CDK2 was imported from 1AQ1
PDB model.

Compound #9 forms (by giving away a proton from N 4582 with π
electrons from Phe 80) an aren-H bound, O 4602 accepts a proton
from Gln 85 and forms an H-bond, N4603 gives away a proton and
forms with Leu 83 an H-bond. Then O4588, C4534, C 4544, C4549, O
4602 and O4604 respectively are exposed to the solvent. Staurosporine
orientation in CDK2 binding pocket N2252 donates a proton and
forms with Glu 81 an H-bond, O2254 accepts a proton and forms with
Leu 83 an H-bound, O2231 accepts a proton from Gly 11 and forms an
H-bond. The protonated N 2264 from NH2 group gives two protons
and forms H-bonds with Asp 86 and Gln 131 and also by its positive
charge forms a salt bridge with Asp 86, N2264 and its bond C2205 are
highly exposed to the solvent; also C2235, C2233, C2257, C2258 are
exposed to the solvent. Furthermore, it is observed that both structures
are aligned coplanar in the binding pocket. Both compounds have an
external hook highly exposed to solvent that keeps the compounds in
the binding pocket. Regarding # 9 the hook is represented by the
sulfonic amide group while in case of Staurosporine by the methylated
N2264 (Figure 6).

By superimposing # 9 with Staurosporine (Figure 7), one observes
that difference in activity and consecutively in specificity is given by
the regions exposed to the solvent and form close bonds with the
amino acids present at the margin of the binding pocket.
Conformational analysis of these regions for both compounds showed
that: (i) in case of Staurosporin the ramified exposed residues, when
rotated around the binding pocket, have significantly favorable

energies compared with the hooked regions of # 9 that has higher
conformational energies. It is observed that Staurosporin has lower
energy values and a large energy domain in contrast with # 9. Regions
with lower conformational energies suggest a stronger binding and a
larger topological domain for forming favorable bonds. Some
conformational energy values are shown in Figure 8 (see supplemental
material for C(2265)-N(2264)-C(2234)-C(2233); O(3957)-S(3956)-
C(3955)-C(3952); O(3957)-S(3956)-N(3958)-H(3970).

Figure 7: Staurosporine (red) superimposed to # 9 (green).

Figure 8: Conformational energy for residue C2263-O2262-C2235-
C2234 of Staurosporine (left) and conformational energy of residue
C4567-S4568-N4570-H4582 of # 9.

Figure 9a shows all the 26 inhibitors docked into the pocket of
CDK2. All molecules were positioned relatively the same, shared a
similar binding mode excepting some molecules due to low activity
with unfavorable conformations (i.e orientation of the functional
groups) for the binding. The binding modes of the most active
compounds correspond with the binding mode of the prototype
molecule Staurosporine. Compounds with poor activity (see Figure 3)
bind differently from Staurosporine. This difference in the binding
modes resulted in distinct activities. Molecular docking and dynamics
Simulation were done to further characterized the binding mode of the
most important functional groups to CDK2. In docking procedure
ligands was treated as flexibly and the protein was held fixed. RMSD
value for heavy atoms of the ligands, between the generated docked
pose and the native pose was 0.82 Å (Figure 9a). Docking was able to
reproduce the native conformation successfully (low RMSD value
between the docked pose and the initial geometry) (Figure 9b).
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Figure 9: (a) Docked structures of all 26 inhibitors with CDK2; (b) Staurosporine, superimposed on 1QA1, with preserved coordinates.

Low molecular dynamic applied on CDK2 complex with a ligand 9
and Staurosporine, respectively, demonstrated the presence of P loop.
Target temperature was set to be 310.15Ko. The final model (Figures
10a-c and 11) was retrieved after 9 picoseconds. One structure was
maintained inert for analogy with second structure on which low
molecular dynamics was applied. All operations were made on the
minimized second structure.

Figure 10: CDK2 in complex with Staurosporine superimposed with
itself. One molecule is hold entirely fixed and is not subject to
simulation. Grey represents immobile distant chains. Yellow fix
chains of the binding site, reed mobile loop; (a) initial step of the
simulation, (b) intermediate step where the P loop is mobile (red)
and (c) Final steep where the loop is out of place comparative to its
superimposed pair. Loop amino acids sequence is ILE-GLY-GLU-
GLY-THR-TYR-GLY-VAL-VAL.

Figure 11: CDK2 in complex with # 9 superimposed with itself. One
molecule is hold entirely fixed and is not subject to simulation. Grey
represents immobile distant chains. Yellow fix chains of the binding
site, reed mobile loop; (a) initial step of the simulation, (b)
intermediate step where the P loop is mobile (red) and (c) Final
steep where the loop is out of place comparative with its
superimposed pair. Loop amino acids sequence is ILE-GLY-GLU-
GLY-THR-TYR-GLY-VAL-VAL.

In summary a strategy based on multiple computation techniques
was used in order to explore the structure base inhibition process for a
series of CDK2 inhibitors. Docking was utilized to generate
hypothetical binding modes for ligands. Low molecular dynamic was
used to evaluate the binding mode from the receptor perspective. Both
Staurosporine and #9 have a lipofilic core made of coplanar aromatic
rings that fit into the binding pocket. As suggested by the QSAR model
shape is of curtail importance. Both Staurosporine and #9 have an
external region that binds with marginal amino acids acting licke a
“hook’’ in fixing the compound at it’s site. Furthermore the satisfactory
agreement between experiment and theory and between QSAR model
and pharmacophore model (build independently) suggested that the
QSAR model has good correlation and predictive power and straitens
suggested findings.
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