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Abstract

Background: Klebsiella spp. are Enterobacteriaceae frequently isolated from pathological specimens during
urinary tract infections, bloodstream infection, and pus. They are becoming more and more resistant to antibiotics
and challenging treatment options. β-lactamases are a great variety of enzymes capable of inducing resistance to β-
lactams. The objective of this study was to identify extended-spectrum-β-lactamase (ESBL) genes in Klebsiella spp.
strains isolated from various specimens in Lomé, Togo.

Methods: Sixty-four strains of Klebsiella spp. were isolated from different pathological specimens. They were
then further characterized and tested against 3rd generation cephalosporin (ceftazidime, ceftriaxone, cefotaxime)
and aztreonam. The detection of blaTEM, blaSHV and blaCTX-M was performed on these strains using simplex and
multiplex PCR techniques.

Results: Fifty five (85.94%) Klebsiella pneumoniae and 9 (14.06%) Klebsiella oxytoca were isolated. These
strains derived from urine (n=33; 51.56%), vaginal swabs (n=21; 32.81%), pus (n=8; 12.5%) and sperm samples
(n=2; 3.13%). All strains were resistant to cefepime. The resistance rate to other β-lactams was 29.69% (19/64) for
piperacillin-tazobactam, 23.08% (12/52) for cefoxitin and 1.56% (1/64) for imipenem. Other inactive antibiotics were
trimethoprim-sulfamethoxazole 96.72% (59/61), doxycycline 92.06% (58/63), ciprofloxacin 90.63% (58/64), nalidixic
acid 80.95% (51/63), chloramphenicol 77.42% (48/62) and gentamicin 76.69% (51/64). Amikacin and fosfomycin
remained the most active antibiotics with 1.56% (1/64) and 4.69% (3/64) resistance rates respectively. ESBL genes
were detected in 63/64 (98.44%) strains. TEM/SHV/CTX-M was predominant 61.90% (39/63) followed by TEM/SHV
20.63% (13/63), SHV/CTX-M 11.11% (7/63), TEM/SHV 4.76% (3/63) and TEM 1.59% (1/63).

Conclusion: ESBL genes occur more by combination 96.88% (62/64) than singularly 1.59% (1/63). These
strains were also very resistant to quinolones and trimethoprim-sulfamethoxazole. These findings are of high
importance in a medical and scientific perspective and may motivate decision makers towards a better monitoring
and control of antimicrobial resistance in Togo.

Keywords: Klebsiella spp; Antimicrobial resistance; ESBL; TEM;
SHV; CTX-M; Togo

Introduction
β-lactamases are serine enzymes (class A, C or D of Ambler

classification) or metalloenzyme (Class B of Ambler classification) that
confer resistance to β-lactams by hydrolyzing their β-lactam ring [1].
The discovery and use of new classes of β-lactams have immediately
been followed by the emergence of new β-lactamases. The first
reported β-lactamases TEM-1/2 and SHV-1, described since 1960 from
E. coli and Klebsiella pneumoniae were usually chromosomal. They are
able to inactivate penicillins (amoxicillin, ampicillin, ticarcillin) hence
the name penicillinases narrow spectrum [2]. From the 80s, plasmid
mediated extended-spectrum-β-lactamases (ESBLs) have been
described and confer resistance to penicillins, oxyimino

cephalosporins (cefotaxime, ceftazidime, ceftriaxone, cefuroxime,
cefepime) and monobactams (aztreonam) [3-5]. These ESBLs are
divided into several groups; the main ones are the derivated of TEM
and SHV groups and CTX-M [6]. In recent years, the CTX-M ESBL
spread around the world and have been described in the commensal
flora and also in hospital-acquired and community infections with a
tendency to supplant the first ESBL groups TEM and SHV [7-14].

Antibiotic resistance thus is a public health concern because of the
difficulty to find treatment options and the fatal outcome to which they
may lead [15-19]. Klebsiella spp. is one of the most frequently isolated
Gram-negative bacteria in hospital and community infections with
ESBL [20-22]. These ubiquitous bacteria, commensal of nasopharynx
and gastrointestinal tract are responsible of community-acquired
pneumonia, urinary tract infections, nosocomial infections,
rhinoscleroma, ozena, chronic ulceration of the genital tract and
colonization [23,24]. Klebsiella pneumoniae and Klebsiella oxytoca are
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the most medically important species, often isolated from severe
infections in hospitalized or ambulatory patients [25-29]. Klebsiella
spp. are naturally resistant to penicillins (amoxicillin, ampicillin,
piperacillin and ticarcillin) due to a low production of a class A
chromosomal β-lactamase (penicillinase). The severity of Klebsiella
spp. infections is increased when the clinical strains acquire resistance
genes, such as ESBLs genes, following the misuse of antibiotics and
other risk factors such as a long hospitalization associated with regular
antibiotics, poor adherence, and low socioeconomic conditions
[30-32]. Previous studies have shown high frequency of ESBL in
hospitals among Klebsiella spp. with variation from one continent to
another. The global multi-center surveillance study Tigecycline
Evaluation and Surveillance Trial (TEST) reported from 2004 to 2009
an overall prevalence of ESBL producing Klebsiella pneumoniae
isolated from intensive care units (ICUs), ranging from 12.8% in North
America to 26.6% in Europe, 33.8% in the Middle East, 35.6% in the
Asia-Pacific region, 45.5% in Latin America an up to 54.9% in Africa
[33]. In addition, Hoban et al. reported a prevalence of ESBL of 8.8%
and 38.9% in North America and Europe respectively with a
predominance of CTX-M15 subgroup [34] on Klebsiella pneumoniae
strains isolated from urinary tract infections.

In Togo, the prevalence of ESBL was previously reported [35];
however, their molecular characterization was not yet described. A
recent study focused on the molecular characterization of ESBL
producing E. coli (Salah et al. submitted for publication). The present
study aimed to characterize ESBL genes in Klebsiella spp. isolated from
various pathological specimens received at the National Institute of
Hygiene in Lomé, Togo.

Material and methods

Collection and identification of Klebsiella spp. strains,
antimicrobial susceptibility testing, and detection of ESBL
phenotype

Klebsiella spp. strains were collected during a prospective study
from May 2013 to July 2015 in the bacteriology laboratory of the
National Institute of Hygiene (INH) in Lomé, Togo. This institute is a
public health service specialized in biomedical analysis,
epidemiological surveillance, immunization, water, and food quality
control. The strains were isolated from various pathological specimens
including urine, vaginal swabs, pus, and sperm samples. The standard
microbiological methods were used to isolate and purify bacterial
strains on Mac-Conkey or eosin methylene blue (EMB) media. The
strains were identified by the API 20E identification system
(Biomérieux, Marcy-Etoile, France).

Antimicrobial susceptibility testing was performed and interpreted
according to the 2014 recommendations of Antibiogram Committee of
the French Society of Microbiology [36]. Antibiotics were purchased
from BioRad (Marnes-la-Coquette, France) and included amoxicillin
+clavulanate (AMC, 20/10 μg), piperacillin-tazobactam (TZP, 75/10
μg), cefoxitin (FOX, 30 μg), ceftriaxone (CRO, 30 μg), ceftazidime
(CAZ, 30 μg), cefotaxime (CTX, 30 μg), cefepime (FEP, 30 μg),
aztreonam (ATM, 30 μg), imipenem (IPM, 10 μg), amikacin (AMK, 30
μg), gentamicin (GEN, 15 μg), nalidixic acid (NAL, 30 μg)
ciprofloxacin (CIP, 5 μg), trimethoprim-sulfamethoxazole (SXT
1.25/23,75 μg), fosfomycin (FOF, 50 μg), doxycycline (DOX, 30 μg) and
chloramphenicol (CHL, 30 μg). The double disk synergy test was used
to detect ESBL production [37]. E. coli ATCC 25922 was used as a
control strain for antimicrobial susceptibility testing.

Klebsiella pneumoniae and Klebsiella oxytoca strains resistant to at
least one 3rd generation cephalosporin, ceftazidime, ceftriaxone,
cefotaxime, or to aztreonam were collected, stored in a storage medium
(tryptic soy broth TSB) at -80°C. They were then transferred to the
Molecular Biology Laboratory of CERBA/LABIOGENE in
Ouagadougou, Burkina Faso for ESBL genes detection.

Extraction of bacterial DNA
The bacterial chromosomal and plasmid DNA was extracted by a

boiling method. Briefly, from the TSB, strains were reactivated on
tryptic soy agar (TSA) for 18-24 h and then inoculated in Luria Bertani
broth (LB, 2 ml). After 18-24 h culture, LB broth were centrifuged (10
000 RPM/min for 10 min) and bacterial cells were suspended in 500 μl
of phosphate buffer (100 mM, pH 7) to weaken the membranes. An
immersion in a boiling water bath (100°C for 15 min) releases the
genetic material. The DNA is then precipitated with 250 μl of absolute
alcohol, washed twice in 1000 μl of 70% alcohol (stored at -20°C),
dried and re-suspended in 100 μl of sterile water.

Detection of ESBL genes
The ESBL genes, blaTEM (TEM-1/2), blaSHV (SHV-1), blaCTX-M-G1

(CTX-M1, 3 and 15), blaCTX-M-G2 and blaCTX-M-G9 (CTX-M9 and
CTX-M14) were detected by PCR using the thermal cycler GeneAmp
PCR System 9700 (Applied Biosystems, California, USA). The
sequences of the different primers provided by Applied Biosystems
(California, USA) are presented in Table 1. Three PCR were
performed: two multiplex for blaTEM, blaSHV, blaCTX-M-G2 and blaCTX-
M-G9 [38] and one simplex for blaCTX-M-G1 [39].

Bla genes Sequence (5’-3’)
Fragments
(pb)

Reference
s

TEM

For :
CATTTCCGTGTCGCCCTTATTC

Rev :
CGTTCATCCATAGTTGCCTGAC 800 [38]

SHV

For: AGCCGCTTGAGCAAATTAAAC

Rev: ATCCCGCAGATAAATCACCAC 713 [38]

CTX-M-G1

For: GTTACAATGTGTGAGAAGCAG

Rev: CCGTTTCCGCTATTACAAAC 1000 [39]

CTX-M-G2

For: CGTTAACGGCACGATGAC

Rev: CGATATCGTTGGTGGTRCCA* 404 [38]

CTX-M-G9

For: TCAAGCCTGCCGATCTGGT

Rev: TGATTCTCGCCGCTGAG 561 [38]

*: R=A ou G

Table 1: Sequences of targeted bla genes.

The PCR final volume of 50 μl, consisted of 2 μl of DNA, 25 μl of 1X
AmpliTaq Gold (used as Master Mix), 5 μl Enhancer, 2 μl of each
primer at different concentration (0.2 to 0.4 pmol/μl) and sterile water
(qs). The amplification programs were:

BlaTEM/SHV and blaCTX-M-G2/G9: initial denaturation 94°C for 10
min. 30 cycles of denaturation 94°C for 40 s, annealing 60°C for 40 s
and elongation 72°C for 1 min with a final elongation step at 72°C for 7
min.
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BlaCTX-M-G1: initial denaturation 96°C for 10 min. 35 cycles of
denaturation 94°C for 1 min, annealing 50°C for 1 min and elongation
72°C for 1 min with a final elongation step at 72°C for 10 min.

An Electrophoretic migration at 100 volts for 1 hour was performed
on a 2% agarose gel stained with ethidium bromide to separate PCR
products. A marker of 100 bp was used as reference. After migration,
the various bands were observed under UV illumination and pictures
recorded.

Statistical analysis
Statistical analysis were performed with the software Epi Info

Version 7.1.1.14. Fisher's exact test with a significance level of 5%
(p<0.05) which was used to interpret results.

Ethical consideration
This study received the INH approval for the transfer of Klebsiella

spp. strains, to the molecular biology laboratory of CERBA/
LABIOGENE, University Ouaga I, Professor Joseph Ki-Zerbo, Burkina
Faso. The institutional ethic committee of CERBA/LABIOGENE
reviewed and approved the study protocol.

Results

Characteristics of Klebsiella spp. strains
A total of 64 strains of Klebsiella spp. resistant to at least one 3rd

generation cephalosporin (ceftazidime, ceftriaxone, cefotaxime) or
aztreonam were collected during the study period. They were isolated
from urine 51.56% (33/64), vaginal swabs 32.81% (21/64), pus 12.5%
(8/64) and sperm samples 3.13% (2/64). They included Klebsiella
pneumoniae 85.94% (55/64) and Klebsiella oxytoca 14.06% (9/64).

All Klebsiella pneumoniae strains were resistant to ceftazidime,
cefepime and aztreonam. The resistance to ceftriaxone and cefotaxime
was 98.18% (54/55). All (100%) Klebsiella oxytoca strains were
resistant to ceftriaxone and cefepime and 88.89% (8/9) were resistant
to ceftazidime, cefotaxime and aztreonam. The resistance profile to
other β-lactams and other antibiotics is presented in Figure 1. Only
imipenem, amikacin and fosfomycin are very active on Klebsiella spp.
strains with a low resistance rate (below 5%). Ciprofloxacin,
doxycycline and trimethoprim-sulfamethoxazole are the most inactive
antibiotics with at least a resistance rate of 90%.

Figure 1: Antimicrobial resistance profile of Klebsiella spp. Strains

ESBL genes distribution within Klebsiella spp. strains
With regards to the PCR results, blaTEM, blaSHV and blaCTX-M group

1 (including blaCTX-M1, blaCTX-M3 and blaCTX-M15) were found in
98.44% (63/64) Klebsiella spp. strains. Of these, 98.41% (62/63) strains
harbored a combination of blaTEM, blaSHV and blaCTX-M with
predominance for the triple combination of TEM/SHV/CTX-M
estimated at 61.90% (39/63) (Figure 2). Only one strain of Klebsiella
oxytoca carried TEM gene. This strain was negative to the double disk
test synergy for the phenotypically detection of ESBL. We did not
identify any gene in one Klebsiella pneumoniae strain that did not
show any ESBL phenotype.

Figure 2: Distribution of bla genes among Klebsiella spp. strains

Resistance to antibiotics according to the distribution of
ESBL genes

Antibiotic resistance rate according to the distribution of genes in
Klebsiella pneumoniae and Klebsiella oxytoca strains are summarized
in Table 2. Results show that 100% Klebsiella pneumoniae strains (3/3)
which expressed the first reported ESBL genes, TEM and SHV were
resistant to ciprofloxacin and trimethoprim-sulfamethoxazole, 66.67%
(2/3) were also resistant to piperacillin-tazobactam, gentamicin,
chloramphenicol and nalidixic acid. All Klebsiella pneumoniae strains
(7/7) carrying SHV and CTX-M genes were resistant to
chloramphenicol and trimethoprim-sulfamethoxazole. Six (85.71%) of
them were resistant to ciprofloxacin and gentamicin, 5 (71.43%) of
them to doxycycline and nalidixic acid. All Klebsiella pneumoniae
strains (12/12) carrying TEM and CTX-M genes were resistant to
ciprofloxacin, doxycycline and trimethoprim-sulfamethoxazole while
90.91% (10/11) were resistant to chloramphenicol, 75% (9/12) to
gentamicin and 66.67% (8/12) to nalidixic acid. Strikingly, the majority
of studied strains, 32 Klebsiella pneumoniae and 7 Klebsiella oxytoca
expressed simultaneously the three genes TEM, SHV and CTX-M.
Among Klebsiella pneumoniae strains, 96.88% (31/32) were resistant
to doxycycline, 96.67% (29/30) to trimethoprim-sulfamethoxazole,
87.5% (28/32) to nalidixic acid and ciprofloxacin, 81.25% (26/32) to
gentamicin and 65.63% (21/32) to chloramphenicol. All Klebsiella
oxytoca were resistant to gentamicin, nalidixic acid, ciprofloxacin,
doxycycline and trimethoprim-sulfamethoxazole, while 83.33% (5/6)
were resistant to chloramphenicol. Imipenem, amikacin and
fosfomycin remained the most active antibiotics according to the ESBL
genes distribution whereas one third (1/3) of strains expressing TEM
and SHV genes are resistant to imipenem. The resistance rate to
piperacillin-tazobactam ranged from 28.13% for the triple
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combination TEM/SHV/CTX-M to 66.67% for the double
combination TEM/SHV in Klebsiella pneumoniae. Similarly, the
resistance rate to cefoxitin ranged from 17.39% for the triple
combination TEM/SHV/CTX-M to 33.33% for the double

combination TEM/SHV. We did not find statistically significant
differences for these two antibiotics (p=0.472 and p=0.426>0.05)
between the groups expressing three ESBL genes (TEM/SHV/CTX-M)
or two ESBL genes (TEM/SHV, SHV/CTX-M, TEM/CTX-M).

ATB TEM TEM/SHV SHV/CTX-M TEM/CTX-M TEM/SHV/CTX-M

Ko# (n/N) Kp (%, n/N) Kp (%, n/N) Kp (%,n/N) Ko# (n/N) Kp (%,n/N) Ko (%,n/N)

TZP 0/1

66.67

2/3

14.29

1/7

41.67

5/12 0/1

28.13

9/32

28.57

2/7

FOX 1/1

33.33

1/3

14.29

1/7

22.22

2/9 0/1

17.39

4/23

28.57

2/7

IPM 0/1

33.33

1/3

0

0/7

0

0/12 0/1

0

0/32

0

0/7

AMK 0/1

0

0/3

0

0/7

0

0/12 0/1

3.13

1/32

0

0/7

GEN 0/1

66.67

2/3

85.71

6/7

75

9/12 1/1

81.25

26/32

100

7/7

CHL 1/1

66.67

2/3

100

7/7

90.91

10/11 1/1

65.63

21/32

83.33

5/6

FOF 0/1

0

0/3

0

0/7

8.33

1/12 0/1

3.13

1/32

0

0/7

NAL 1/1

66.67

2/3

71.4

5/7

66.67

8/12 1/1

87.5

28/32

100

6/6

CIP 1/1

100

3/3

85.71

6/7

100

12/12 1/1

87.5

28/32

100

7/7

DOX 1/1

66.67

2/3

71.43

5/7

100

12/12 1/1

96.88

31/32

100

6/6

SXT 1/1

100

3/3

100

7/7

100

12/12 1/1

96.67

29/30

100

6/6

Table 2: Antimicrobial resistance profile of Klebsiella spp. strains according to the distribution of bla genes. ATB: Antibiotic, Kp: Klebsiella
pneumoniae, Ko: Klebsiella oxytoca, TZP: piperacillin-tazobactam, FOX; cefoxitin, IPM: imipenem, AMK: amikacin, GEN: gentamicin, CHL:
chloramphenicol, FOF: fosfomycin, NAL: nalidixic acid, CIP: ciprofloxacine, DOX: doxycycline, SXT: trimetroprim-sulfamethoxazole; #The
proportions was not indicated for a number equal to one strain.

Distribution of the combination TEM/SHV/CTX-M
according to the biological specimen
The combination of TEM, SHV and CTX-M genes was carried by

57.14% (12/21), 45.45% (15/33) and 37.5% (3/8) of Klebsiella spp.
strains isolated from vaginal swabs, urine and pus respectively.
Klebsiella pneumoniae from the two sperm samples expressed
simultaneously these three genes, TEM, SHV and CTX-M.

Discussion
Nowadays, resistance to antibiotics is a real public health concern

worldwide. It has been clearly demonstrated that the production of β-
lactamases is the most important mechanism of antibiotic resistance in
Gram negative bacteria. The description of first β-lactamases TEM-1/2,
SHV-1 and their derivatives was followed by the characterization of

new ones dominated by CTX-M group which is now, the most
widespread. This study was carried out to characterize ESBL genes in
Klebsiella spp. strains resistant to at least one 3rd generation
cephalosporins or aztreonam, isolated from different specimen
received at INH Lomé, Togo. It has been reported that Klebsiella spp.
present a high medical interest among other Enterobacteriaceae as
expressing ESBL resistance mechanism and are frequently isolated in
hospital and community infections.

According to our expectation, all Klebsiella spp. strains were highly
resistant (over 98%) to 3rd generation cephalosporins (ceftazidime,
ceftriaxone, cefotaxime), 4th generation (cefepime) and aztreonam.
However, their resistance rate is higher than those found in previous
studies conducted in North America. Indeed, through the international
monitoring program for antibiotic resistance SENTRY involving four
geographic regions, Asia Pacific, Europe, Latin America, North
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America (United States of America and Canada), Sader et al. found a
resistance rate of 80.3% for ceftazidime, 62.1% for ceftriaxone, 83.9%
for aztreonam and 10.6% for cefepime [40]. Nevertheless, our results
are in line with those of Irenge et al., showing 100% prevalence of
resistance for ceftriaxone and ceftazidime on ESBL producing
Klebsiella spp. strains isolated from urine in Congo [41]. For
piperacillin-tazobactam and cefoxitin two β-lactams subject of
comparative study on their efficiency on ESBL producing
Enterobacteriaceae [42-44], we found a prevalence of resistance at
30.91% and 20.93% for Klebsiella pneumoniae and 22.22%, 33.33% for
Klebsiella oxytoca respectively. These prevalence rates seem low
compared to those reported in North America, 47.4% for piperacillin-
tazobactam, and 44.2% for cefoxitin [40]. The resistance to cefoxitin
can be induced by a production of cephalosporinase AmpC, a class A
enzyme that inactivates other 3rd generation cephalosporins. AmpC
decreases the intracellular concentration of the antibiotic by the efflux
pump mechanism and mediates a loss of outer membrane porins [45].
Fortunately, Klebsiella spp. isolated in this study have remained
relatively sensitive to imipenem, amikacin and fosfomycin which are
among other, recommended antibiotics in case of infection by ESBL
producing bacteria [46-48]. The prevalence of resistance to these
antibiotics ranged from 0 to 5% as in a series of ESBL producing
Klebsiella spp. strains isolated in Tunisia, where the prevalence of
resistance to imipenem was zero [49]. However, the resistance rates for
amikacin and fosfomycin were high, 10% and 17.5%, respectively [49].
Higher resistance rates were found in non-intensive care units in the
United States of America and Europe for imipenem (22% and 6.9%)
and amikacin (18.9% and 19.1%), respectively [50].

In addition, Klebsiella spp. isolated in the present study showed a
strong resistance rate to quinolones (nalidixic acid and ciprofloxacin)
ranging from 78.18% (43/55), 89.09% (49/55) for Klebsiella
pneumoniae to 100% for Klebsiella oxytoca. Similar results were found
in Congo, in Tunisia and in Bolivia. In Congo, 83.3% of Klebsiella spp.
strains were resistant to ciprofloxacin [41], in Tunisia, 80% (32/40) of
Klebsiella spp. strains were resistant to nalidixic acid and 67.5%
(27/40) to ciprofloxacin [49]. Results in Bolivia showed that 100%
(6/6) of Klebsiella spp. strains were resistant to ciprofloxacin and
nalidixic acid [51].

The analysis of the PCR product showed the simultaneous presence
of the three genes, TEM, SHV and CTX-M in 61.90% of the studied
strains, 59.26% (32/54) in Klebsiella pneumoniae, 77.78% (7/9) in
Klebsiella oxytoca. TEM was detected in 1.59% (1/9) Klebsiella oxytoca
strain, SHV gene alone was not found in this study. In Burkina Faso,
on 28 ESBL producing Klebsiella pneumoniae screened for the
detection of bla genes, 14.28% expressed TEM, 10.71% SHV, 25%
CTX-M, 10.71% TEM and SHV and 3.57% of strains exhibited the
triple combination of TEM, SHV and CTX-M [52]. In another study
conducted in Burkina Faso, CTX-M15 was found in 17/17 Klebsiella
spp. isolated from urine in a pediatric hospital in Ouagadougou [53]
suggesting that CTX-M15 was present in West Africa. Our results are
consistent with those found by Alibi et al. in Tunisia, on a large series
of 118 ESBL producing Klebsiella spp. where the triple combination
TEM/SHV/CTX-M represented 44.91% (53/118), and the double
combinations were SHV/CTX-M represented 28.81% (34/118) of
cases, TEM/CTX-M represented 4.23% (5/118) and TEM/SHV
represented 3.39% (4/118) of cases [54]. The presence of TEM, SHV
and CTX-M genes alone in the study of Alibi et al. in Tunisia was high
compared to our results with 3.39% (4/118), 4.23% (5/118) and 11%
(13/118) respectively [54]. In Mozambique, on 19 ESBL producing
Klebsiella pneumoniae isolated from urine and blood culture, Pons et

al., found 15.79% (3/19) expressed only CTX-M15, 63.16% (12/19)
TEM/CTX-M15 and 21.05% (4/19) the triple combination TEM/SHV/
CTX-M15 [55]. In Tanzania, on 92 ESBL producing Klebsiella
pneumoniae, Mshana et al. found 53.26% (49/92) carried TEM/CTX-
M15, 11.96% (11/92) SHV/CTX-M15 and 10.87% (10/92) CTX-M15
alone [56]. Similarly, in Brazil, Jaskulski et al. found that 16.67% (2/12)
of ESBL producing Klebsiella pneumoniae carried TEM, CTX-M,
TEM/SHV genes, while 8.33% (8/12) carried SHV alone. The double
TEM/CTX-M and triple TEM/SHV/CTX-M combinations were 25%
(3/12) and 16.67% (2/12) respectively [57]. It is observed that the
expression of blaCTX-M is currently more prevalent and as we report for
the first time in Togo, more frequent in a triple combination with
blaTEM and blaSHV. The explanation of this triple combination should
be more investigated.

The antimicrobial susceptibility profile of ESBL producing Klebsiella
spp. strains shows that the different ESBL genes do not significantly
influence the activity of the antibiotics. As expected, resistance to
imipenem, amikacin and fosfomycin was low. On the contrary, the
resistance rates to trimethoprim-sulfamethoxazole, ciprofloxacin,
nalidixic acid, chloramphenicol and gentamicin were very high
ranging from 65.63% for chloramphenicol in the triple combination
TEM/SHV/CTX-M to 100% for most of them in all double
combinations. These antimicrobial resistances associated with ESBL
genes are in line with our expectation and are consistent with the
results found in previous studies [1–6]. Indeed, it has been described
that ESBL genes and some antibiotic resistance genes are often found
on the same mobile genetic elements and are thereby transmitted
together by horizontal transfer [1–6]. In Tanzania, on ESBL producing
Klebsiella pneumoniae causing sepsis in neonates, Mshana et al.
showed that blaCTX-M15 was localized on a plasmid of 25 to 485KB and
that ST14 and ST48 clones carried also resistance genes to gentamicin
and trimethoprim-sulfamethoxazole [56]. More recently, in a study in
Central African Republic, Rafai et al. showed that all ESBL producing
Klebsiella pneumoniae isolated from surgical wounds, expressed
blaCTX-M15 and aac(6 H)-Ib-cr [58]. The last one has been described to
be associated with a resistance to ciprofloxacin, norfloxacin and
aminoglycosides [59]. This is probably due to the same mechanisms
that might explain the results we observed.

In this study, the combination of TEM, SHV and CTX-M genes was
found on strains isolated mostly from urine and sperm. This result is
also consistent with previous findings in Tunisia where 86.44% of ESBL
producing Klebsiella spp. were isolated from urine and 44.91%
(53/118) of all studied strains expressed the triple combination
TEM/SHV/CTX-M [54]. The observation of this combination based
on the pathological sample needs to be analyzed more thoroughly.

Conclusion
In this study, we observed that the majority of Klebsiella spp.

resistant to 3rd generation cephalosporins were producing ESBL. The
major groups of ESBL genes, TEM, SHV and CTX-M were present. We
report for the first time, that the triple combination of TEM, SHV and
CTX-M genes was predominant. Stressfully, all ESBL producing
Klebsiella oxytoca were resistant to quinolones (nalidixic acid and
ciprofloxacin), doxycycline and trimethoprim-sulfamethoxazole and
also to a lesser extent to gentamicin and chloramphenicol. The same
trend is observed for ESBL producing Klebsiella pneumoniae.
Antibiotics that remained active, including fosfomycin, amikacin and
imipenem are unfortunately a little affordable to patients in limited
resources countries. It is therefore important to these countries to
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strengthen public health policies in order to prevent, monitor and
control antimicrobial resistance. In addition, other studies have been
done for screening of medicinal plants with potential antimicrobial
activities. In a public health point of view, it is now important for
political, economic and medical sectors to work together towards the
selection of those plants which could be active against clinical resistant
strains.
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