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Abstract
This study focused on elucidating the role of PANoptosis in Osteosarcoma (OS), a highly malignant bone tumor. By screening and integrating 
OS-related microarray datasets from Gene Expression Omnibus (GEO), we identified 105 PANoptosis-related differentially expressed genes 
(OS_PAN_DEGs) primarily involved in apoptosis, necroptosis, proteasome, hippo signaling, and neurodegenerative disease pathways. 
These genes were used to classify OS into three distinct subtypes with varying clinical outcomes, immune characteristics, and mutational 
landscapes. Additionally, we developed an OS_PAN index model to assess the association between PANoptosis and OS features, 
treatment response, and prognosis. Notably, high OS_PAN-index patients responded well to immunotherapy, while low-index patients 
showed sensitivity to small-molecule targeted drugs. Drug screening revealed Pazopanib, Chelerythrine, Staurosporine, Hydroxyurea, and 
Sunitinib as potential therapeutic agents positively correlated with OS_PAN_DEGs expression. This comprehensive analysis enhances our 
understanding of OS pathogenesis and offers novel therapeutic targets for OS treatment. 
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Introduction
Osteosarcoma (OS) is a malignant bone tumor that primarily 

affects children, adolescents, and young adults [1]. Its clinical 
manifestations are diverse, with common symptoms including pain, 
mass, limited mobility, and pathological fractures [2]. In recent years, 
OS, as a malignant tumor, has garnered widespread attention globally. 
Despite certain progress made in clinical treatment, the incidence and 
mortality rates of OS remain high, severely affecting the quality of life 
and lifespan of patients [3]. 

The primary treatment modalities for OS mainly include surgical 
resection, radiotherapy, and chemotherapy, among other traditional 
therapeutic methods [4]. However, these approaches have certain 
limitations. Surgical resection can be effective for early-stage OS, 
but, for advanced cases, the surgical difficulty is high, postoperative 
recovery is slow, and it can easily lead to functional impairment [5]. 
The control effect of radiotherapy on OS is limited, and the side effects 
of radiotherapy are considerable, easily damaging surrounding normal 
tissues [6]. Chemotherapy also has certain restrictions in the treatment 
of OS, as some patients cannot tolerate it due to drug resistance or 
adverse reactions [7]. Therefore, it is particularly important to search 
for new therapeutic targets and strategies.

The characteristics of PANoptosis, also known as non-apoptotic 
cell death, have become a popular research direction in the field of 
immunotherapy in recent years. PANoptosis is a form of cell death 
distinct from the classical apoptotic death pathway, exhibiting different 
morphological manifestations and regulatory mechanisms [8]. 
PANoptosis characteristics have been proven to play a major role in 
tumor genesis and development [9]. Firstly, the interaction between 
PANoptosis characteristics and tumor cells can be achieved through 
apoptotic pathways [10]. The emergence of PANoptosis characteristics 
can restore the function of abnormally expressed apoptosis-related 
proteins, guiding tumor cells to re-enter the apoptotic pathway and 
eliminate them [11]. Secondly, PANoptosis characteristics can increase 
the expression of tumor antigens, activate immune cells, and enhance 
their ability to kill tumor cells [12,13]. Finally, the expression of 
PANoptosis characteristics can also regulate the invasion and metastasis 
abilities of tumor cells, inhibiting tumor progression and metastasis 
[14,15]. However, there is still relatively limited research on its role and 

mechanisms in the immunotherapy of OS.

In recent years, immunotherapy, as a novel therapeutic approach, has 
gradually become a research hotspot and attracted much attention from 
researchers [16]. Immunotherapy aims to treat tumors by enhancing 
the patient’s own immunity and regulating their immune system to 
recognize and attack cancer cells [17,18]. In the immunotherapy of 
OS, the current main methods include immune checkpoint inhibitors, 
cellular immunotherapy, and vaccine therapy [19,20]. However, despite 
some important progress made in the field of immunotherapy, there are 
still some issues that need to be addressed. On the one hand, OS exhibits 
a certain degree of heterogeneity, and there are differences among 
different patients, leading to varying responses to immunotherapy 
[21]. On the other hand, OS cells possess certain immune evasion 
mechanisms, such as expressing inhibitory costimulatory molecules 
that suppress the activation and killing functions of immune cells, 
thereby reducing the effectiveness of immunotherapy [22,23]. 
Therefore, a deeper understanding of the mechanisms of PANoptosis 
can provide new opportunities for developing effective immunotherapy 
strategies for OS. Currently, there is a gap in research on the role of 
PANoptosis in OS.

In this study, we employed consensus-cluster-plus analysis to 
identify three subpopulations based on differentially expressed genes 
(OS_PAN_DEGs) related to PANoptosis and OS. Subsequently, we 
investigated the immune characteristics and mutational landscapes of 
these subpopulations and constructed a PANoptosis risk scoring model 
(OS_PAN-index). Utilizing this PANoptosis signature, we evaluated 
the potential association between PANoptosis and OS characteristics, 
as well as its predictive value for treatment response and prognosis. 
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Our findings may pave the way for innovative targeted therapies in the 
treatment of OS patients.

Materials and Methods
Data resources

Microarray datasets related to OS were downloaded from the 
national center for biotechnology information Gene Expression 
Omnibus (GEO) database [24]. The screening criteria were as follows: 
The microarray dataset should be a gene expression profile; the dataset 
should be a gene expression profile related to OS tissue samples; OS 
samples should be derived from primary and metastatic sites; the gene 
expression profile should be from human OS; and the total number 
of OS samples should be greater than 20. Datasets that did not meet 
any of the criteria were excluded. Finally, three datasets were selected 
for further analysis: GSE16088, GSE21257 and GSE14359 [25-27]. 
Among them, GSE16088 and GSE14359 datasets were used to screen 
for differentially expressed genes. Initially, the datasets were merged 
using the R package in silico merging, and batch effects were removed 
using the remove batch effect function from the R package limma. 
This resulted in a matrix with batch effects removed. The GSE21257 
database was used as the training set, including 53 OS patients and their 
clinical information (age, gender, histological subtype and huvos grade, 
tumor location, metastasis at diagnosis and survival information). 
The validation set, Therapeutically Applicable Research to Generate 
Effective Treatment-Osteosarcoma (TARGET-OS) dataset (n=95), was 
obtained from the TARGET database. Detailed information on the 
datasets is provided in Table 1.

Dataset/
Cohort Database Data type Sample information

GSE16088 GEO RNA-seq data
14 cases of osteosarcoma tissue 
samples + 6 cases of normal 
tissue samples

GSE14359 GEO RNA-seq data
10 cases of osteosarcoma tissue 
samples + 2 cases of normal 
tissue samples

GSE21257 GEO RNA-seq data + 
clinical information

53 cases of osteosarcoma tissue 
samples

TARGET-OS TARGET RNA-seq data + 
clinical information

95 cases of osteosarcoma tissue 
samples

Table 1: Data source

We collected five pathways downloaded from the Molecular 
Signatures Database (MSigDB) (version 7.4) (Gene Set Enrichment 
Analysis |MSigDB: gsea-msigdb.org) for analysis, including reactome_
pyroptosis, hallmark_apoptosis, Kyoto Encyclopedia of Genes and 
Genomes (KEGG)_apoptosis, reactome_apoptosis, and map04217 
pathway (KEGG_necroptosis) [28]. The union of all gene sets from 
these five pathways was designated as the PANoptosis pathway gene set 
(Supplementary Table 1).

Identification of OS-related gene modules

The Weighted Gene Co-Expression Network Analysis (WGCNA) 
method was utilized to identify gene modules associated with OS. 
WGCNA not only provides information on the correlation between 
two nodal genes and their related genes, but also offers topological 
properties of co-expression networks [29]. The WGCNA package was 
employed in R3.4.1 software to screen for stable gene modules in the 
merged dataset of GSE16088 and GSE14359.

Identification of Differentially Expressed Genes (DEGs)

Firstly, the raw datasets of GSE16088 and GSE14359 were 
background-corrected, normalized and log2-transformed using the 
affy package in R. When multiple probes identified the same gene, their 
average expression values were calculated to determine its expression 
level. After merging these two datasets, the bioconductors “Surrogate 
Variable Analysis (SVA)” R package was applied to eliminate batch 
effects. Differential gene analysis was performed using the “limma” 
package in R with a cut-off of P<0.05 and |log2FC|>2 to distinguish 
DEGs between disease and healthy samples in the merged dataset. 
Subsequently, volcano plots and heatmaps were employed to visualize 
the DEG expression data [30].

Unsupervised cluster analysis of OS-PANoptosis-related 
model genes

We performed consensus clustering analysis using the “consensus-
cluster-plus” package and model genes to identify unknown OS 
subtypes [31]. The clustering process utilized 1-Pearson correlation 
distance, with a sample resampling rate of 80%, and was repeated ten 
times. We employed the empirical cumulative distribution function 
plot to determine the optimal number of clusters.

Functional enrichment analysis

To perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) functional enrichment analysis, we utilized 
the R packages “org.Hs.eg.db” and “clusterProfiler” (version 3.14.3). 
Firstly, we annotated the genes with GO terms using “org.Hs.eg.db” 
and mapped them to the background set. Subsequently, we employed 
the “clusterProfiler” package to conduct GO and KEGG enrichment 
analysis and obtain the gene set enrichment results. In both cases, the 
minimum and maximum sizes of the gene sets were set to 5 and 5000, 
respectively. We retrieved the latest KEGG pathway gene annotations 
through the KEGG rest api and mapped them to the background 
set. The statistical significance of both analyses was determined by a 
P-value<0.05 and False Discovery Rate (FDR)<0.25 [32]. 

For Gene Set Enrichment Analysis (GSEA), we obtained subset 
collections from the molecular signatures database to assess relevant 
pathways and molecular mechanisms based on gene expression profiles 
and phenotypic groupings [33]. We performed 1000 permutations 
to obtain statistically significant results with a P-value<0.05 and 
FDR < 0.25.

Analysis of somatic mutations

To assess somatic mutations and Tumor Mutation Burden (TMB), 
we utilized the R package “maftools” [34,35]. Somatic mutation data 
were obtained from the TARGET database and analyzed to identify 
nonsynonymous somatic mutations. Subsequently, the TMB score 
was calculated by dividing the number of non-synonymous somatic 
mutations by the total size of the genome in megabases.

Analysis of the immune landscape

The Tumor Immune Dysfunction and Exclusion (TIDE) 
framework is a computational tool that utilizes gene expression 
profiles of cancer samples to assess the potential for tumor immune 
evasion [36,37]. The TIDE score, calculated for each tumor sample, 
serves as a biomarker to predict the response to immune checkpoint 
blockade, including Anti-Programmed Cell Death -1 (Anti-PD1) and 
Anti Cytotoxic T-Lymphocyte-Associated Antigen 4 (Anti-CTLA4), 
across different cancer types. We employed five algorithms to evaluate 
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immune cell infiltration in the tumor microenvironment: Timer, epic, 
xcell, cibersort, and mcpcount [38,39] . These algorithms provide a 
comprehensive assessment of the immune cell landscape within the 
tumor microenvironment.

Survival analysis and machine learning

We employed the “glmnet” package to establish a Lasso regression 
model and utilized 10-fold cross validation to select the optimal lambda 
value, aiming to enhance the interpretability and predictive accuracy 
of the model. We determined the coefficient for each gene through 
multivariate Cox analysis and generated the final regression model 
using the selected lambda value. 

Initially, patients were divided into two groups based on risk 
coefficient values using the percentile (50%) approach, categorizing 
them as either high OS_PAN index or low OS_PAN index groups. 
Subsequently, we used the “survfit” function from the “survival” R 
package to analyze the prognostic differences between the two groups. 
The log-rank test method was adopted to assess the significance of 
prognostic differences between samples in different groups.

Drug screening based on core genes

To facilitate the development of therapeutic approaches, we 
explored potential drug molecules significantly associated with core 
genes utilizing the Drug Signature Database (DSigDB) and cell miner 
database [40,41].

Statistical analysis was performed using R software (v.4.1.0). 
Continuous variables were expressed as mean ± Standard Deviation 
(SD), while categorical variables were represented as frequencies 
(percentages). For continuous variables, student’s t-test or Wilcoxon 
test was used to test differences between two groups based on the 

assumption of normality of the data. For categorical variables, chisquare 
test or fisher’s exact test was employed based on the expected frequency 
counts. In all tests, a two-sided P-value less than 0.05 was considered 
statistically significant. Kaplan-meier method was adopted for survival 
assessment, and the log-rank test was used to compare differences 
between groups. Multivariate survival analysis was performed using the 
Cox proportional hazards regression model.

Results
Dataset evaluation

The combined gene expression levels of the GEO series after batch 
effect correction were standardized, and the results before and after 
standardization are shown in Figures 1A-1D. In the GSE14359 and 
GSE16088 datasets, we identified probes corresponding to 13,231 
genes and confirmed the DEGs in OS. After filtering, a total of 13,231 
molecules were obtained, among which 2,835 genes met the threshold 
of |log2 (FC)| ≥ 1 and p.adj< 0.05 (Figures 1E and 1F).

Weighted Gene Co-expression Network Analysis (WGCNA) 

Here, we employed WGCNA to identify modules most relevant to 
OS. Based on scale-free topology and mean connectivity, we selected 
β=14 (scale-free R2=0.82) as the “soft” threshold (Figure 2A). Figure 
2B depicts the clustering dendrogram for OS and control groups. 
Using this power value, we generated 11 Gene Co-Expression Modules 
(GCMs), presented in Figure 2C with distinct colors. The correlation 
between OS and GCMs is shown in Figures 2D-2F, where the turquoise 
module (consisting of 3136 genes), grey module (consisting of 1461 
genes), and darkolivegreen module (consisting of 3628 genes) exhibited 
the highest correlation with OS (turquoise: r=-0.87, p=7e -11; grey: 
R=0.76, p = 4e- 07; dark olive green: R= 0.62, p=1e-04), and thus were 
considered as key modules for subsequent analysis.

Figure 1: Identification of differentially expressed genes in the merged osteosarcoma dataset. Based on the cut-off criteria: Absolute |log2FC|>1 and P value<0.05. 
(A): Box plot of gene expression before normalization in two selected GEO (Gene Expression Omnibus) databases; (B): Box plot of gene expression after 
normalization in two selected GEO databases; (C): Umap distribution plot before batch effect removal in two selected GEO databases; (D): Umap distribution 
plot after batch effect removal in two selected GEO databases; (E): Volcano plot of differentially expressed genes after merging two selected GEO datasets; (F): 
Clustered heat map of differentially expressed genes after merging two selected GEO datasets. Note: ( ): GSE14359; ( ):16088
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Identification and functional analysis of PANoptosis related 
differentially expressed genes in OS

The PANoptosis gene set encompassed genes related to pyroptosis (27 
genes), apoptosis (298 genes) and necroptosis (160 genes) (Figure 3A). The 
DEGs in OS included 2835 DEGs screened from the GEO database and 
8225 genes from the modules most relevant to OS identified by WGCNA 
(Figures 1C and 1D, and (Supplementary Figure S1). By mapping the three 
gene sets screened from GEO, WGCNA, and PANoptosis, we obtained 
105 genes, which were defined as OS differentially expressed genes (OS_
PAN_DEGs) related to PANoptosis (Figure 3B). We performed GO, KEGG 
and GSEA enrichment analyses on the OS_PAN_DEGs to explore their 
biological functions and related signaling pathways. 

The Biological Process (BP) analysis revealed that the OS_PAN_
DEGs were mainly enriched in processes such as cellular metabolic 
regulation, hematopoietic stem cell differentiation, interleukin-1-
mediated signaling, and RNA transcription regulation (FDR< 0.1, 
p-value< 0.05), (Figure 3C). The Molecular Function (MF) analysis 
demonstrated that the OS_PAN_DEGs were primarily enriched in 
protein binding, enzyme binding, enzyme regulator activity, and drug 
binding (FDR<0.1, p-value<0.05), (Figure 3D). The Cellular Component 

(CC) analysis showed that the OS_PAN_DEGs were mainly enriched 
in proteasome complexes, endopeptidase complexes, peptidase 
complexes, and the cytoplasm (FDR<0.1, p-value<0.05), (Figure 3E). 
KEGG enrichment analysis indicated that the OS_PAN_DEGs were 
primarily enriched in apoptosis, necroptosis, proteasome, hippo 
signaling pathway and multiple pathways related to neurodegenerative 
diseases (FDR<0.1, p-value<0.05), (Figure 3F).

To further elucidate the biological functions assumed by the OS_
PAN_DEGs, we performed GSEA analysis on the OS_PAN_DEGs using 
the KEGG, hallmark, and reactome datasets. The results suggested that 
the OS_PAN_DEGs were primarily enriched in apoptosis (reactome 
and KEGG), mammalian Target Of Rapamycin Complex 1 (mTORC1) 
signaling pathway (hallmark), focal adhesion (KEGG), and Vascular 
Endothelial Growth Factor (VEGF) signaling pathway (reactome) 
(NES>1, p-value <0.05, FDR<0.25), (Figures 2G-2I). Overall, our study 
identified 105 PANoptosis-related differentially expressed genes (OS_
PAN_DEGs) in OS and revealed their enrichment in various biological 
functions and signaling pathways, such as the mTORC1 signaling 
pathway, apoptosis, and VEGF signaling pathway, indicating their 
potential involvement in tumor growth, metastasis and drug resistance 
(Figures 4A-4E).

Figure 2: WGCNA Co-expression and enrichment analysis in Osteosarcoma (OS) Patients. (A): Network topology analysis under different soft-thresholding 
powers; (B): Cluster dendrogram of expressed genes in OS; (C): Module-trait relationships in OS. Each cell contains the corresponding correlation and p-value; 
(D): Correlation between genes in the turquoise module and OS; €: Correlation between genes in the grey 60 module and OS; (F): Correlation between genes in 
the dark olive green module and OS.
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Figure 3: Identification of PANoptosis-related differential genes in Osteosarcoma (OS) and GO/KEGG/GSEA enrichment analysis of OS_PAN_DEGs. 
(A): PANoptosis gene list; (B): Venn diagram composed of GEO differential genes, WCGNA module genes, and PANoptosis-related datasets; (C-E): GO 
enrichment analysis based on OS_PAN_DEGs; (F): KEGG enrichment analysis based on OS_PAN_DEGs; G–I: GSEA analysis based on Kyoto Encyclopedia 
of Genes and Genomes (KEGG), hallmark, and reactome datasets, respectively. Note: ( ): APOPTOSIS (ES=0.3519, NP=0.0471), MTORC1_SIGNALINING 
(ES=0.5467,NP=0.0125), SIGNALINING_BY_VEGF (ES-0.4987,NP=0.0396);  ( ):  FOCAL_ADHESION (ES=0.6467, NP=0.0224), ALLOGRAFT_REJECTIONS 
(ES=0.5157, NP=0.0385), CELL_CYCLE (ES=0.4000, NP=0.0483); ( ): ALZHEIMERS_DISEASE (ES=0.60000, NP=0.0173), APICAL_JUNCTION (ES=0.5524, 
NP=0.0404), REGULATED_NECROSIS (E=0.5397, NP=0.0376), ( ): PROTEASOME (ES=0.3176, NP=0.0347), TGF_BETA_SIGNALING (ES=0.3726, 
NP=0.0479), APOPTOSIS (ES=0.3806, NP=0.0382); ( ): PATHOGENIC ESCHERICHIA COIL INFECTION (ES=0.3847, NP=0.0285), MYC TARGETS VI 
(ES=0.3874, NP=0.0486), PROGRAMMED CELL DEATHS (ES=0.3927, NP=0.0377)

Figure 4: Identification of three hepatocellular carcinoma subtypes with different prognoses using OS_PAN_DEG expression profiles. (A, B): Evaluation of the 
average silhouette width and area under the CDF curve within clusters when k=2 to 10; ©: Classification of the training cohort into three osteosarcoma subtypes 
using consensus clustering; (D): Heat map showing the expression of OS_PAN_DEGs in different osteosarcoma subtypes; (E): Kaplan-Meier survival analysis 
among the three OS_PAN_DEGs subtypes.
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presented the somatic mutation signatures across the subgroups of OS_
PAN_DEGs. The top 19 genes with the highest mutation frequencies 
across the three clusters were Tumor Protein 53 (TP53), Mucin 16, Cell 
Surface Associated (MUC16), Alpha Thalassemia/Mental Retardation 
Syndrome X-Linked (ATRX), Retinoblastoma 1 (RB1), Contactin 
Associated Protein-Like 5 (CNTNAP5), Titin (TTN), CUB and Sushi 
Multiple Domains 3 (CSMD3), Piccolo Presynaptic Cytomatrix 
Protein (PCLO), Alström Syndrome Protein 1 (ALMS1), Dystrophin 
(DMD), Dynein Axonemal Heavy Chain 3 (DNAH3), HECT Domain 
E3 Ubiquitin Protein Ligase 4 (HECTD4), Laminin Subunit Alpha 2 
(LAMA2), Ryanodine Receptor 2 (RYR2), Calcium Voltage-Gated 
Channel Subunit Alpha1 B (CACNA1B), Chromodomain Helicase DNA 
Binding Protein 1-Like (CHD1L), CUB and Sushi Multiple Domains 
2 (CSMD2), CXXC Finger Protein 1 (CXXC1), Dynein Axonemal 
Heavy Chain 9 (DNAH9), and Dynein Axonemal Intermediate Chain 
4 (DNAI4). Among these, Tumor Protein 53 (TP53) had the highest 
mutation frequency (21%), while the mutation frequencies of the 
other nine genes ranged from 3%-11% (Figure 5F). The most common 
mutations involved cytosine, indicating cytosine instability, potentially 
due to the ease of oxidation of its amino group. Tumor Mutation Burden 
(TMB), an important indicator of the number of mutations in cancer, 
is also a novel biomarker for assessing the response to PD-1 antibody 
therapy. We compared the TMB across the three clusters and found that 
cluster_2 had a higher TMB than cluster_1 and cluster_3 (cluster_2 vs. 
cluster_1, P=0.00017; cluster_2 vs. cluster_3, P=0.0019), (Figure 5G). In 
summary, our findings reveal significant differences in the expression of 
immune checkpoints and mutation signatures across the three subgroups, 
which may have important implications for cancer immunotherapy.

Identification of three OS subtypes with different prognoses 
based on the expression profile of OS_PAN_DEGs

Previous studies have indicated that PANoptosis may influence 
tumor mutations and immune infiltration. To assess the immune 
landscape across subgroups of OS_PAN_DEGs, we utilized several 
immune algorithms, including cibersort, estimate, and xcell to analyze 
the immune profiles of the three clusters. A waterfall plot in Figure 5A 
depicts the distribution of 22 immune cell types within the training 
set of GSE21257. Subsequently, we evaluated the immune-score, 
stromal-score and microenvironment score across the subgroups of 
OS_PAN_DEGs (Figure 5B and 5C). Our findings revealed significant 
differences in both immune-score and stromal-score between cluster_1 
and the other two groups (cluster_1 vs. cluster_2, P=0.006; cluster_1 vs. 
cluster_3, P=0.043 for immune-score; cluster_1 vs. cluster_2, P=0.0066; 
cluster_1 vs. cluster_3, P=0.016 for stromal-score). In the assessment 
of microenvironment score, no statistical difference was observed 
between cluster_1 and cluster_3, whereas a significant difference was 
present between cluster_1 and cluster_2 (P=0.0023), (Figure 5D). 
Furthermore, we evaluated the gene expression of immune checkpoints 
in the subgroups of OS_PAN_DEGs, including (CD276), Cluster of 
Differentiation 86 (CD86), Tumor Necrosis Factor Ligand Superfamily 
Member 14 (TNFSF14), Cluster of Differentiation 40 (CD40), Cluster 
of Differentiation 48 (CD48), Hepatitis A Virus Cellular Receptor 2 
(HAVCR2), Leukocyte Associated Immunoglobulin Like Receptor 
1 (LAIR1), Programmed Cell Death 1 Ligand 2 (PDCD1LG2) and 
Tumor Necrosis Factor Ligand Superfamily Member 4 TNFSF4. These 
immune checkpoints were upregulated in cluster_2 and down regulated 
in cluster_1 and cluster_3 (all P<0.05), (Figure 5E). Subsequently, we 

Figure 5: Unique immune characteristics and mutation landscapes in the OS_PAN_DEGs subgroups. A: Waterfall plot of the distribution of 22 immune cell types in 
the training set; B-D: Immune scores, stromal scores, and microenvironment scores for the three HPAN_DEGs subgroups; E: Expression of immune check points 
in different HPAN_DEGs subtypes; F: Mutation landscape of OS_PAN_DEGs alterations between high-risk and low-risk osteosarcoma patients in the training set; 
G: Tumor mutational burden indifferent OS_PAN_DEGs subtypes. Note: ( ): C1; ( ): C2; ( ): C3.
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Sankey diagrams were employed to visualize the relationship between 
the OS_PAN-index risk groups and individual clinical characteristics, 
revealing that cluster_1 was mainly concentrated in the high OPANindex 
group, while cluster_2 was primarily found in the low OS_PAN-index 
group (Figure 6H). Based on the results of cox regression analysis, we 
constructed a nomograph, which identified the OS_PAN-index as an 
independent risk factor (Figure 6I). In summary, the PANoptosis risk 
scoring model (OPAN-index) based on OS_PAN_DEGs, constructed 
through LASSO regression, univariate and multivariate regression 
analysis, accurately predicts the survival prognosis of OS patients and 
has the potential to become a potential independent risk factor for 
clinical decision-making.

Validating the effectiveness of the OS_PAN-index as a 
predictive factor for the prognosis of OS patients

To test the reproducibility of the OS_PAN-index model as a 
predictive tool, we validated the model in the TARGET-OS cohort 
(validation set). Using Kaplan-Meier analysis, we observed a significant 
decrease in patient survival rates with increasing OS_PAN-index 
(Figure 7A). In the validation set, the prognosis of the low OS_PAN-
index group was significantly better than that of the high OS_PAN-
index group (MST=1.79 years vs MST=10.89 years, P<0.001) (Figure 
7B). In summary, the OS_PAN-index model demonstrated significant 
predictive value for patient survival rates in the validation set, with 
higher OS_PAN-index scores correlating with poorer prognoses.

Constructing a risk assessment model

To further assess the impact of OS_PAN_DEGs on survival 
prognosis, we utilized Least Absolute Shrinkage and Selection Operator 
(LASSO), univariate, and multivariate regression to screen out eight 
gene signatures closely related to prognosis. Based on these signatures, 
we ultimately constructed a PANoptosis risk index model (OS_PAN-
index) for OS (Figures 6A-6D). The formula for the OS_PAN-index is as 
follows: HPAN-inde = 0.188BTG3-0.288CYCS+0.246DYNLL1-0.235IL
6+0.898PSMA2+0.587PSMD13+0.673PSME4+0.321STAT6. Using the 
OS_PAN-index score, we classified 53 patients with complete survival 
information in the training set into a high OS_PAN-index group and 
a low OS_PAN-index group (34 in the high group vs. 19 in the low 
group). Kaplan-Meier analysis revealed that the prognosis of the low-
risk group (Median Survival Time, MST=6.82 years) in the training set 
was significantly better than that of the high-risk group (MST=5.18 
years) (P=0.02), (Figure 6E). We investigated the relationship between 
patient prognosis, gene expression, and the OS_PAN-index, observing 
a significant decrease in survival rates with increasing OS_PAN-index. 
As expected STAT6, IL6, PSMA2, CYCS emerged as protective factors, 
with their expressions downregulated as the OS_PAN-index GDI, 
RG9MTD1, PSME4, PSMD13, BTG3 were identified as risk factors 
(Figure 6F). Additionally, we evaluated the Area Under the Curve 
(AUC) of the OS_PAN-index as a predictive model, demonstrating its 
high accuracy in predicting 3-year, 4-year, and 5-year survival (Figure 6G). 

Figure 6: Construction of a PANoptosis risk scoring model based on OS_PAN_DEGs to assess the prognosis of Osteosarcoma (OS_PAN-index). (A, B): Eight 
PANoptosis-related genes associated with survival were identified through lasso regression analysis with 10-fold cross-validation; (C, D): These eight genes were 
further confirmed through univariate and multivariate Cox analysis; (E): Kaplan-Meier analysis demonstrated the prognostic significance of the OS_PAN-index model 
in the training set; (F): Distribution of OS_PAN-index, survival status of each patient, and heat map of the prognostic eight-gene signature in the training set; (G): 
Receiver Operating Characteristic (ROC) analysis of the OS_PAN-index model in the training set; (H): Sankey diagram showing the interrelationship between OS_
PAN_DEGs subtypes, risk groups of OS_PAN-index and individual clinical characteristics; (I): A nomogram was established to predict the prognosis of osteosarcoma 
patients.
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To further elucidate the molecular mechanisms underlying 
different OS_PAN-index groups, we conducted Gene Set Variation 
Analysis (GSVA) enrichment analysis. The results indicated significant 
enrichment in signaling pathways such as spliceosome, ubiquitin-
mediated proteolysis, mismatch repair, and steroid biosynthesis 
in the high OS_PAN-index group. In contrast, the low OS_PAN-
index group exhibited significant enrichment in signaling pathways 
related to glycosaminoglycan degradation, glycerolipid metabolism, 
alanine, aspartate, and glutamate metabolism, and glycosphingolipid 
biosynthesis (Figure 8I). These findings suggest that patients with 
higher OS_PAN-index scores may be more sensitive to immune 
checkpoint therapy, while those with lower OS_PAN-index scores may 
be more suitable for targeted drug therapy.

Drug screening

To identify potential drugs for the treatment of OS, we conducted 
a drug target enrichment analysis using the cellminer and DsigDB 
databases, focusing on eight core genes BTG3, CYCS, DYNLL1, IL6, 
PSMA2, PSMD13, PSME4, and STAT6 as genetic targets relevant to 
risk model construction. The results revealed a significant positive 
correlation between the expression levels of these eight core genes and 
the drugs pazopanib, chelerythrine, staurosporine, hydroxyurea and 
sunitinib (Table 2). These drugs provide important reference points for 
the development of OS treatment strategies.

Immune cell profiles and molecular pathways associated with 
the OS_PAN-index in OS patients

To further explore the immune characteristics of different OS_PAN-
index groups, we employed five distinct immune algorithms, including 
cibersort, estimate, tide, timer, and xcell, to assess the relationship 
between the OS_PAN-index and the immune microenvironment. The 
results in Figures 7C and 7D indicate a significant correlation between 
the OS_PAN-index and the expression of Plasma cells, T cells gamma 
delta, and NK cells resting, with all P-values less than 0.05. Additionally, 
the stromal score, immune score, and estimate score were significantly 
higher in the high OS_PAN-index group compared to the low OS_
PAN-index group (all P<0.05), (Figure 7E). Notably, the Microsatellite 
Instability (MSI) score, an important indicator reflecting tumor 
genomic stability, is closely associated with the effectiveness of immune 
checkpoints (56). Our analysis revealed a significantly higher MSI score 
in the high OS_PANindex group compared to the low OS_PAN-index 
group, with similar results observed for other scores such as the Tumor 
Immune Dysfunction and Exclusion (TIDE) score, Interferon-Gamma 
(IFNG) score, Cluster of Differentiation 86 CD8 score, dysfunction 
score, exclusion score, Myeloid-Derived Suppressor Cells (MDSC) 
score, and Tumor-Associated Macrophage (TAM) score (all P<0.05), 
(Figures 8A-8H). This observation suggests that the high OS_PAN-
index group may be more likely to benefit from immunotherapy 
compared to the low OS_PAN-index group.

Figure 7: Group validation of OS_PAN-index as a prognostic predictor in Osteosarcoma patients. (A): Distribution of OS_PAN-index, survival status of each patient, 
and heat map of the prognostic eight-gene signature in the validation set (target-OS, n=95); (B): Kaplan-Meier analysis demonstrated the prognostic significance of 
the OS_PAN-index model in the validation set; (C): Boxplots showing significant differences in immune cells between different OS_PAN-index groups; (D): Correlation 
between OS_PAN-index and immune cell infiltration in osteosarcoma assessed using cibersort; (E): Immune scores, stromal scores, and estimate scores among 
different OS_PAN-index groups. *p:<0.05; **: p<0.0; ***: p<0.001; ****: p<0.0001. Note: ( ): High; ( ): Low
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Figure 8: Immune cell landscape and molecular pathways associated with OS_PAN-index in osteosarcoma patients. A-H: Tide score, IFNG score, CD8 score, 
dysfunction score, exclusion score, MDSC score, and TAM score in low and high OS_PAN-index groups; I: Enriched pathways for genes with specific expression in 
the high and low OS_PAN-index groups.

Table 2: Drug screening

Drug DsigDB.p-value Cellminer.p-value Cellminer.Cor Genes

Pazopanib 0.009561 0.007298 0.343007 IL6

Chelerythrine 0.013522 0.012157 0.321832 IL6; CYCS

Elesclomol 0.019829 0.000108 -0.47892 BTG3; PSME4

Staurosporine 3.06E-04 0.012342 0.321183 IL6;CYCS

Tamoxifen 0.002599 0.000151 -0.46998 IL6; CYCS; BTG3

Hydroxyurea 0.037767 0.012742 0.319809 BTG3; CYCS

Fulvestrant 1.95E-04 0.000965 -0.41541 IL6; PSME4; CYCS; BTG3

Sunitinib 0.016286 0.013166 0.31839 IL6; STAT6

Recently, the concept of PANoptosis has garnered widespread 
attention in the biomedical field. As an inflammatory form of 
programmed cell death mediated by the PANoptosome complex, 
PANoptosis encompasses all the key features of pyroptosis, necroptosis, 
and apoptosis, making it a important breakthrough in the study of 
cell death mechanisms [44]. In the development of OS, a malignant 
bone tumor, PANoptosis plays a major role. OS, originating from the 
mesenchymal cell lineage, is highly malignant with a poor prognosis, 

Discussion
OS, a highly malignant tumor often occurring in children and 

adolescents, exhibits remarkable infiltrative and metastatic capabilities 
[42]. Currently, traditional treatment methods for OS have demonstrated 
limitations, such as the limited killing effect of chemotherapy on tumor 
cells, which can easily lead to the development of drug resistance [43]. 
Therefore, the search for novel therapeutic approaches and targets 
holds significant importance for the treatment of OS. 
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in the training set, with the prognosis of the high-risk group being 
significantly worse than that of the low-risk group. In the validation set, 
we further validated the effectiveness of the OS_PAN-index, observing 
a significant decrease in patient survival rates with increasing OS_PAN-
index. We delved into the relationship between the OS_PAN-index 
and the immune microenvironment, finding significant correlations 
between high OS_PAN-index groups and the expression of various 
immune cell types. Moreover, the immune scores, stromal scores, and 
microenvironment scores were higher in these groups compared to 
the low OS_PANindex groups. Additionally, we observed a significant 
increase in MSI scores and other scores related to immunotherapy 
effectiveness in the high OS_PAN-index groups. These results suggest 
that OS patients with high OS_PAN-index may be more likely to 
benefit from immunotherapy. Through GSVA enrichment analysis, 
we further revealed the molecular mechanisms underlying different 
OS_PAN-index groups. The high OS_PAN-index groups exhibited 
significant enrichment in signaling pathways such as the spliceosome 
and ubiquitin-mediated protein hydrolysis, which are typically 
associated with tumor immune responses and cell death processes[52]. 
In contrast, the low OS_PAN-index groups were enriched in some 
metabolic-related pathways. These results not only aid in understanding 
the biological differences between different OS_PAN-index groups but 
also provide a theoretical basis for developing personalized treatment 
strategies for OS patients based on their OS_PAN-index.

Finally, utilizing the cellminer and DsigDB databases, we conducted 
a drug target enrichment analysis for the eight core genes closely 
related to the construction of the OS risk model. The analysis revealed 
significant positive correlations between the expression levels of these 
core genes and drugs such as pazopanib, chelerythrine, staurosporine, 
hydroxyurea, and sunitinib. Pazopanib, a multi-target tyrosine kinase 
inhibitor, has demonstrated antitumor activity in various tumors 
by inhibiting tumor angiogenesis and tumor cell proliferation [53]. 
Chelerythrine, a natural product extracted from plants, exhibits a 
wide range of biological activities, including antitumor effects [54]. 
Staurosporine, a broad-spectrum protein kinase inhibitor, can induce 
apoptosis and inhibit multiple tumors [55]. Hydroxyurea, a commonly 
used cytotoxic drug, exerts its therapeutic effects by inhibiting DNA 
synthesis [56]. Sunitinib, another multitarget tyrosine kinase inhibitor, 
is widely used in the treatment of renal cell carcinoma and has shown 
efficacy in other solid tumors as well [57]. The discovery of these drugs 
provides important references for developing therapeutic strategies 
for OS. Considering the complexity and heterogeneity of OS, a single 
treatment approach often fails to achieve satisfactory results. Therefore, 
combining the characteristics of these potential drugs, we can consider 
developing combined treatment regimens in anticipation of achieving 
better therapeutic outcomes. 

When discussing this study, we must acknowledge some existing 
limitations. Although we have made every effort to analyze the immune 
landscape of OS through bulk RNA sequencing data, the lack of 
single-cell sequencing data and spatial transcriptomic data remains a 
significant shortcoming. The immune microenvironment is a highly 
complex and intricate microsystem, where cellular differences and 
interactions are necessary for understanding disease progression 
and developing therapeutic strategies. Therefore, relying solely on 
macroscopic bulk data for analysis may result in the loss of major 
cellular level information. Furthermore, to more accurately validate 
the predictive value of our OS_PAN-index model in immunotherapy 
for OS, we require additional immunotherapy-related data with larger 
sample sizes. Such data would provide more direct and compelling 
evidence to support our model.

often leading to lung metastasis within a few months, posing a severe 
threat to patients’ lives and health [45]. The characteristics of PANoptosis 
make it significan in the immune response and tumor progression 
of OS. Although previous studies have gained some understanding 
of the molecular mechanisms of necroptosis [46,47], pyroptosis, and 
apoptosis in OS they often focus on only one or two forms of cell death, 
failing to comprehensively assess their roles in OS Our study is the first 
attempt to evaluate the characteristics of PANoptosis in OS.

In this study, we examine into the characteristics and roles of 
PANoptosis in OS for the first time. Through the normalization of 
GEO series combined gene expression data, we screened out a gene 
set highly related to OS. Subsequently, using WGCNA, we identified 
the most relevant module for OS. By integrating information from 
GEO, WGCNA, and the PANoptosis gene set, we identified 105 OS_
PAN_DEGs related to PANoptosis. These genes not only encompassed 
the core processes of PANoptosis, such as pyroptosis, apoptosis, and 
necroptosis, but were also closely associated with the occurrence and 
development of OS. The results of GO, KEGG, and GSEA enrichment 
analyses revealed that OS_PAN_DEGs were involved in various 
pathways, including cell metabolic regulation, hematopoietic stem cell 
differentiation, interleukin-1-mediated signaling, RNA transcriptional 
regulation, apoptosis, necroptosis, proteasome, hippo signaling, and 
neurodegenerative diseases. Notably, we found that OS_PAN_DEGs 
were particularly enriched in the Mammalian Target of Rapamycin 
Complex 1 (mTORC1) signaling pathway and VEGF signaling 
pathway. mTORC1, as a key regulator of cell growth and metabolism, 
its abnormal activation is often closely associated with tumorigenesis 
and development [48]. Therefore, we speculate that OS_PAN_DEGs 
may affect the proliferation and metabolism of OS cells by regulating 
the mTORC1 signaling pathway, thereby promoting tumor growth and 
metastasis. In addition, we also observed a significant enrichment of 
OS_PAN_DEGs in the apoptotic process. Apoptosis is an important 
form of programmed cell death, and its abnormality often leads to the 
unlimited proliferation and malignant transformation of tumor cells 
[49]. By further studying the specific mechanisms of these genes in 
apoptosis, we hope to provide new targets for the treatment of OS. 

Utilizing consensus clustering analysis, we successfully classified 
the OS cohort into three subtypes with distinct prognoses based on the 
expression profile information of OS_PAN_DEGs. The expression of 
PSMD14 and PPT1 genes was upregulated in cluster_1, while TIMP1 
and GADD45A were down regulated in cluster_2 and cluster_3 relative 
to cluster_1. These differences in gene expression may directly affect the 
apoptotic process of OS cells, resulting in prognostic variations among 
the different subtypes. cluster_2 exhibited higher immune and stromal 
scores, as well as a higher TMB. These characteristics may render 
cluster_2 more sensitive to immunotherapy, potentially explaining its 
relatively better overall survival rate [50]. Additionally, differences in 
the expression of immune checkpoints among the different subtypes 
suggest the possibility of developing personalized immunotherapy 
strategies tailored to each subtype of OS. Notably, our study also 
identified several genes with high-frequency mutations, such as TP53. 
Mutations in these genes may influence the biological behaviors of OS 
cells, including proliferation, apoptosis, invasion, and metastasis [51]. 
Further investigation of these mutated genes can not only reveal the 
pathogenesis of OS but also provide clues for the development of novel 
targeted therapies.

Through LASSO regression, univariate, and multivariate regression 
analysis, we identified eight gene signatures closely related to prognosis 
and subsequently constructed the OS_PAN-index scoring system. 
This scoring system demonstrated excellent predictive performance 
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Conclusion
In summary, we conducted a thorough exploration of the OS_

PAN_DEGs related to the PANoptosis process in OS, successfully 
identifying three subgroups with unique prognostic features, mutation 
patterns, and immune infiltration characteristics. Notably, these 
subgroups also exhibited significant differences in the expression of 
immune checkpoints, deepening our understanding of the biological 
characteristics of OS. Furthermore, we constructed the OS_PAN 
index, an innovative indicator that is not only closely related to patient 
survival prognosis but also effectively predicts patient responses to 
smallmolecule targeted drugs and immunotherapy. We anticipate that 
this model will assist doctors in more accurately identifying patients 
suitable for immunotherapy or targeted therapy, providing new 
strategies for personalized treatment of OS. This study not only opens 
a new path for precision medicine in OS but may also provide new 
insights for revealing the PANoptosis mechanism in OS.
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