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Abstract
The Follicle-Stimulating Hormone Receptor (FSHR) is used as an imaging biomarker for the detection of ovarian 

cancer (OC). FSHR is highly expressed on ovarian tumors and involved with cancer development and metastatic 
signaling pathways. A decapeptide specific to the FSHR extracellular domain is synthesized and conjugated to 
fluorescent dyes to image OC cells in vitro and tumors xenograft model in vivo. The in vitro binding curve and 
the average number of FSHR per cell are obtained for OVCAR-3 cells by a high resolution flow cytometer. For 
the decapeptide, the measured EC50 was 160 µM and the average number of receptors per cell was 1.7 x 107. 
The decapeptide molecular imaging probe reached a maximum tumor to muscle ratio five hours after intravenous 
injection and a dose-dependent plateau after 24-48 hours. These results indicate the potential application of a 
small molecular weight imaging probe specific to ovarian cancer through binding to FSHR. Based on these results, 
multimeric constructs are being developed to optimize binding to ovarian cells and tumors.

Keywords: Ovarian cancer; Follicle-stimulating hormone receptor;
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Abbreviations: FSH: Follicle-Stimulating Hormone; FSHR:
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Introduction
Ovarian cancer (OC) is the leading cause of mortality from 

gynecological cancer in women, with a five year survival rate less than 
45% [1,2]. OC occurs commonly in postmenopausal women. Due 
to lack of specific symptoms and reliable screening procedures, the 
majority of women with OC (60-65% of patients) are diagnosed late 
(stages III-IV) when the cancer has spread beyond the ovaries, resulting 
in a 5 year survival rate of 16-28% [3]. Several hypotheses to explain 
the etiology of ovarian epithelial cancer have been proposed, including 
the incessant ovulation hypothesis [4,5], the gonadotropin theory [6,7], 
and the sex-steroid hormones hypothesis [8,9]. Current epidemiologic 
studies, and models of OC, do not provide a satisfactory explanation 
for ovarian carcinogenesis [3,10]. Overall the molecular mechanisms of 
ovarian epithelial cancer tumorigenesis and metastasis remain unclear 
[3,10,11]. Searching novel diagnostic markers to improve early ovarian 
cancer detection has been an active research [12,13].

Some institutions perform annual pelvic exam to screen early 
ovarian tumor. Transvaginal ultrasound and serial measurements 
of CA-125 have included for high-risk population where CA125 is a 
membrane associated mucin on the surface of epithelial cells of ovarian 
cancer that is released within the blood and used to screen for ovarian 
cancer. The sensitivity of CA-125 in detecting early ovarian cancer is 
less than 60% [14,15]. Even together with ultrasound screening, the 
positive predictive value improves only about 20% [16,17]. Utilizing 
short peptide to receptor specific recognition in nuclear medicine has 
shown success in some cancer imaging. 111In labeled DTPAoctreotide 
(OctreoScan) binding to somatostatin receptors on cell surface 
approved by FDA has proven to be a successful and versatile imaging 
agent for primary and metastatic neuroendocrine tumors [18-20]. 
Other peptides including Bombesin to target gastrin releasing peptide 

receptor, vasoactive ntestinal peptide (VIP) to target VIP receptor, 
Exendin to target glucagon-like peptide 1 (GLP-1) receptor, and RGD 
to target integrin are currently in development or in clinical trials.

Recent studies show that the Follicle Stimulating Hormone Receptor 
(FSHR) is highly expressed on ovarian epithelial cancer cells and 
facilitates the development and the progression of OC [21-25]. FSHR 
belongs to G protein-coupled receptor and consists of a transmembrane 
and an extracellular domain, where the former is characterized by a 
seven helical repeats and the latter by multiple leucine-rich repeats. 
FSHR is expressed on normal ovarian epithelium, e.g., the fallopian tubal 
epithelium, and shares about 70% transmembrane domain sequence 
with other G protein-coupled receptors, such as Luteinizing Hormone 
Receptor [22,26]. In normal epithelial tissue, FSH binds to FSHR and 
works synergistically with other steroid hormones to regulate follicular 
growth during the ovulation process. In OC, FSHR signaling influences 
the expression of important oncogenes such as MAPK, EGFR, c-myc, 
and HER-2/neu [21]. And, FSHR expression increases in the following 
order of disease progression: ovarian epithelial inclusions (OEIs), 
benign ovarian epithelial tumor (OET), and borderline OETs [3,27]. In 
some studies, it has been reported that FSHR level can decrease between 
borderline OETs and ovarian carcinomas [3,24]. This differential 
expression of FSHR allows the possibility to image OEC in different 
stages of formation based on the binding molecules to FSHR. To image 
FSHR in vivo, a hydrophilic deca amino acid sequence (BI-10) derived 
from human FSH binding inhibitor (~57 kDa) in human follicular fluid 
[28,29] identified by DW Lee et al. is employed. A functional radio 
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ligand receptor assay shows that the synthetic BI-10 peptide specifically 
binds to FSHR and inhibits FSH-stimulated estradiol and secondary 
messenger cAMP synthesis at high concentrations, where the possible 
BI-10 binding site were shown to overlap with the FSH-β unit [30].

In this study, the goal is to determine the feasibility of imaging 
ovarian tumors based on the binding of BI-10 to FSHR in vitro and in 
vivo. First, the BI-10 deca peptide was synthesized. A fluorescein was 
conjugated to its N-terminal to quantify the in vtiro binding affinity to 
ovarian epithelial cancer cells using flow cytometry techniques. Next, a 
near-infrared fluorochrome was conjugated to the BI-10 and tested in 
vivo by optical imaging in subcutaneous ovarian tumors in xenograft 
mouse model. This was used to determine the optimal set of imaging 
protocols based on the pharmacokinetics of the BI-10 molecular 
imaging probe to determine the time after injection when the tumor-
to-reference tissue ratio (TRR) is at a maximum and the reproducibility 
(or error) in these measurements across a cohort of mice.

Material and methods
Synthesis of BI-10 peptide

FSH receptor-binding inhibitor fragment (BI-10), TENLEPNGEG-
NH2 was synthesized by standard solid-phase Fmoc chemistry on an 
ABI 433 peptide synthesizer, starting with Fmoc-amide resin. Side-
chain protecting groups were Trt for Asn, tBu for Thr and OtBu for 
Glu. Once peptide chain assembly was complete, the peptide was 
cleaved from the resin using TFA cocktail reagent (TFA: phenol: water: 
thioanisol: TIPS, 100:5:5:2.5). 10 ml of cleavage solution was added 
to 400 mg of resin and allowed to shake for two hours. The resin was 
filtered, and the peptide was precipitated by excess cold ether. The 
crude peptide was purified by C18-RP HPLC (Vydac 218TP10155) and 
identified by analytical HPLC and MALDI mass spectroscopy.

Conjugation of fluorescein to BI-10 decapeptide (BI-10FAM) 
molecular probe

5(6)-FAM, SE [5-(and-6)-carboxyfluorescein, succinimidyl ester, 
Anapec) was conjugated to the N-terminus of the peptide at room 
temperature in DMSO with a 2 to 1 molar equiv of 5(6)-FAM, SE to 
peptide, in the presence of 10 equiv of DIEA. The crude fluorescent-
peptide was purified by C18-RP HPLC (Waters SunFire prep column, 
5 μm, 30 x 150 mm). The final product was characterized by analytical 
HPLC and MALDI mass spectroscopy for purity (>95%) and 
composition.

Preparation of OVCAR-3 cells for flow cytometry

OVCAR-3 cells (generously provided by Dr. Mellisa Fishell of 
Indiana University School of Medicine) were chosen for in vitro 
binding experiment due to its high level of FSHR expression [21]. 
For the first 2-3 passages, the cells were plated in 75 mm2 flasks using 
RPMI medium (supplemented with 5 µM Insulin (Sigma), 20% FBS 
(Hyclone), Sodium private (GIBCO), and Pen Strep (GIBCO)), and 
placed in an incubator (5% CO2 at a temperature of 37ºC incubator) to 
maintain viability. For peptide binding experiments, cells were plated 
in six-well plates with the medium and environment conditions as 
previously described. Medium was changed every 2-3 days until cells 
reached more than 90% confluency. Prior to BI-10 peptide incubation, 
the medium was aspirated slowly to maintain OVCAR-3 cell sheet 
adhering to each well. Cells in each well were rinsed with 1 mL PBS 
(without calcium and magnesium ions) followed by slow aspiration. 
Five of the six wells were dispensed into 1 mL solution of the medium 
and different dilutions of the fluorescein conjugated BI-10 peptide: 1.0 

µM, 10.0 µM, 50 µM, 100 µM, 250 µM, and 500 µM. The last well was 
dispensed into a 1 mL medium without peptides to act as control. The 
six-well plate was placed in the incubator for 30 minutes, after which, 
the medium was aspirated and each well was gently rinsed using PBS to 
remove any unbound peptides. To remove the OC cells from the plates 
and to maintain the integrity of the ectodomain of FSHR, the cells 
were exposed to 5 mM of EDTA in PBS. These cells were transferred 
to flow cytometry tubes and spun down at 1200 rpm for five minutes, 
after which the supernatant was replaced with fresh PBS buffer. The 
cell pellets were resuspended using a vortexer, replaced with fresh PBS 
buffer, and centrifuged a second time to remove any unbound peptides. 
These samples were ready for imaging within the flow cytometer. This 
procedure was repeated for each concentration of peptides three times.

In vitro flow cytometry of BI-10FAM binding affinity and 
receptor density

Each sample of OVCAR-3 cells was placed within the flow cytometer 
(Beckman Coulter FC500) and the FITC fluorescent intensity from 
the BI-10FAM peptide bound to the OVCAR-3 cells were acquired. A 
TOPO-3 dye (Sigma) in 1 nM concentration was used to acquire the 
fluorescence from only viable cells in a two-color flow cytometry assay. 
Ten thousand cells were counted and the fluorescence measured in each 
sample. The median fluorescent intensity was plotted as a function of 
the log base 10 of the BI-10 concentration. The EC50 value (binding 
affinity) and receptor saturation intensity were calculated using a 
nonlinear regression analysis using GraphPad Prism fitting algorithm 
(GraphPad Software, Inc.). Each data point (concentration) is the 
average of three measurements. To calibrate the flow cytometer, the raw 
flow cytometry intensity from five different calibrated FITC fluorescence 
intensity micro beads (Quantum FITC MESF High Level beads, Bangs 
Labs, Fishers, IN) were measured under identical instrument settings, 
thus allowing the measured fluorescent intensities to be converted 
to a quantifiable number of BI-10 peptides. The QuickCal software 
(Bangs Labs) was used to obtain a semi-log of MESF, the Molecules of 
Equivalent Soluble Fluorochrome of calibration microspheres, versus 
flow cytometry fluorescent intensity. From this curve, the total number 
of receptors per OVCAR-3 cell was determined.

Synthesis of a NIR FSH molecular imaging probe (BI-10AF750)

BI-10 peptide synthesis procedures were identical to those 
mentioned in the previous section. The near infrared dye, Alexa 
Fluor 750 (Invitrogen), was conjugated to the N-terminus of the BI-
10 peptide. This was done at room temperature in DMSO with a one-
to-one molar equivalent of Alexa Fluor 750 to peptide in the presence 
of 10 equivalent of triethylamine (Et3N). The conjugating reaction was 
monitored by analytical HPLC and was completed in 24 hours. The 
crude Alexa Fluor 750-peptide conjugate (BI-10AF750) was purified by 
C18-RP HPLC (Vydac 218-TP510). The purity of final product was 
checked by analytical HPLC to be in excess of 95%, and confirmation 
of the molecular mass was determined by MALDI mass spectroscopy 
(MNa+ 1946.8Da, found 1947.1Da). 

Animal model

All animal preparation and procedures for this study were reviewed 
and approved by the Indiana University School of Medicine Institutional 
Animal Care and Use Committee. Six mice with subcutaneous ovarian 
tumors were used in this study. Approximately 106 SKOV3x ovarian 
cancer cells (0.1 mL PBS) were subcutaneously injected into the flank 
of (6-8 week) of each athymic nude mice (Harlan, Indianapolis, IN) and 
allowed to grow to a diameter of 8-10 mm (4-6 weeks). To determine 
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the third wash. Therefore, the data after second wash was used in all 
binding measurements from different peptide concentrations.

In vivo kinetics and uptake

Displayed in Figure 2 are plots of the BI-10AF750 pharmacokinetics. 
In Figure 2, the tumor-to-reference tissue signal (TRR) is plotted as 
a function of time for the following doses of BI-10AF750–120 µg (M1, 
blue diamonds), 40 µg (M2, green triangles), and 15 µg (M3, red 
squares). From this data, the peak TRR signal occurs at approximately 
5-6 hours post injection, while the washout rate determined from 
the average dose-normalized reference fluorescence signal (Figure 2) 
is approximately 4 hours post injection. For the mice in this second 
group, the average value of TRR (for M4-M6) for images acquired 
six hours post injection is 1.62 ± 0.16, which is significantly larger 
to baseline measurements of 1.05 ± 0.05 (P<0.01; two-tailed t-test) 

the pharmacokinetics of BI-10AF750 molecular imaging probe and 
the approximate dose, the first group of three mice was each given a 
different dose of 120 µg, 40 µg, and 15 µg of the BI-10AF750and its tumor-
to-reference tissue (TRR) measured as a function of time. From this 
data, the time after injection that provides an optimal TRR will be 
determined. For the second cohort (n=3), each mouse will be given the 
same dose of BI-10AF750 (80 µg) to test the reproducibility of (error in) 
TRR in vivo imaging.

In Vivo near-infrared fluorescence (NIRF) imaging

Prior to imaging, each mouse was anesthetized using a mixture 
of acepromazine (0.1 mg/kg, i.m.) and torbugesic (0.1 mg/kg, i.m.). 
A 27½ gauge butterfly catheter (Abbott Laboratories) flushed with 
heparin was inserted in the tail vein and secured. The catheter was 
connected to a syringe filled with BI-10AF750 peptide in PBS, which 
was mounted on a programmable infusion pump (BS-8000; Braintree 
Scientific, Inc.). The mouse and infusion pump was positioned within 
the light-tight box of the optical imager (LB981 NightOWL, Berthold) 
used for the measurement of the NIR emitting molecular Alexa Fluor 
750 (Invitrogen). The excitation source was filtered using a HQ710/75X 
bandpass filter (Chroma Technologies Corp.) and uniformly 
illuminated the field of view of the mouse. The emission spectrum 
was filtered using a HQ810/90M bandpass filter to enhance the Alexa 
Fluoro 750 fluorescence relative to the auto fluorescence signal. Optical 
images were acquired prior to injection, every 3 seconds during the 
injection of the probe (50 µL/min), and every 60 seconds over the next 
60-90 minutes using a 10 ms exposure time. Additional images were 
taken 4, 8, 12, 24 and 48 hours post-injection for the mice in the first 
group, while images of the mice in the second group were acquired at 6 
hours post-injection using a 40 msec exposure time. 

Analysis of in vivo NIRF data

The tumor-to-reference tissue ratio (TRR) was calculated at each 
time point to assess the relative binding and uptake kinetics of the BI-
10AF750 probe in ovarian tumors. To calculate the signal from the tumor, 
an ROI was drawn around the tumor and the mean (± sem) fluorescence 
signal divided by the exposure time was calculated (photons/mm2/s). 
The average signal (± sem) from the reference tissues was calculated 
from three ROIs placed within the hind-leg skeletal muscle, the forearm 
skeletal muscle, and the liver. For both groups of mice, the TRR was 
plotted as a function of time.

Results
Binding affinity of BI-10 decapeptide

Flow cytometry is widely used to measure ligand binding to 
receptors expressed on cell membranes [31,32]. In Figure 1, the binding 
curve of the BI-10FAM ligand is plotted. From this data, the EC50 of BI-10 
was measured to be 160 µM (R2=0.93) and the saturation concentration 
was 449.5 µM, where the 95% confidence interval ranged from 337 to 
561 µM. Based on this latter value, the number of FSH receptors per 
OVCAR-3 cell was estimated to be 1.7 x 107. An important factor that 
could influence these results is if there is a loss of receptor function 
due to a significant amount of freely suspended fluorescein remaining 
in the buffer. To address this concern, cells were visually inspected 
prior to and after incubation with BI-10 peptides to assure cells were 
attached to the plate. Flow cytometry measurements were taken before 
and after numerous washes to assure unbound peptide were removed 
and stability of the bound peptide (see supplemental data), where 
measurements after the second wash was comparable to those after 

Figure 1: Dose Response Curve for BI-10FAM. The average fluorescence 
intensity and its standard deviation (n=5) was plotted as a function of peptide 
concentration (1.0 װM, 10.0 װM, 50 װM, 250 װM, and 500 װM) and fitted to a 
sigmoidal curve (solid line). Note, the error bars of the first three points are 
small and covered by the size of markers.

Figure 2: Kinematics of BI-10AF750 Molecular Imaging (MI) Probe. (Primary 
Axis) Plotted is the tumor-to-reference tissue (muscle) ratio (TRR) as a function 
of time for three mice (M1-M3) each injected with 120 װg (blue), 40 װg (green), 
and 15 װg (red) of the BI-10AF750 MI probe. The peak TRR occurred within 4-8 
hours post-injection. (Secondary Axis) Similarly, the average dose-normalized 
fluorescence signal is plotted as function of time for muscle (n=3) from which 
the BI-10AF750 clearance rate was determined to be 4 hours.
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(Figure 3). The reproducibility of the fluorescent signal was at 
nearly equal levels in all three tumors (Figure 4), where a TRR of 
approximately 10% was calculated. Signals observed in the kidneys 
and bladder indicates renal filtration and excretion, with no signal 
observable signal detected in the liver at this time (Figure 5). 

Discussion
Even though ovarian cancer (OC) is the eighth most common 

cancer, it causes more deaths compared to all other female gynecological 
cancers (CDC). Because specific symptoms associated with OC occur 
late in disease progression, 75 percent of all cases are diagnosed at stage 
III or IV resulting in a 5 year survival rate of 5 percent. Identifying a 
select set of biomarkers capable of covering the molecular heterogeneity 
of OC can help improve the early detection and debulking of ovarian 
cancer, detection of residual or recurrent disease, the staging and 
planning of therapy, and enhance targeted therapeutic interventions. 
When developing, screening and implementing new imaging agents 
prior to clinical translation, optical imaging provides an efficient set of in 
vitro and in vivo assays while avoiding the use of ionizing radiation and 
costs associated with nuclear medicine techniques (equipment, space, 
and maintenance) associated with PET and SPECT. OctreoScan is a 
successful example where many peptide compounds are tested in early 
clinical trials [33-37]. In this study, a small peptide (BI-10) antagonist 
specific to the FSH receptor was synthesized and conjugated to optical 
and NIR fluorochromes, and used to determine their binding affinity 
(ED50) to epithelial OC cells and investigate their pharmacokinetics 
and in vivo imaging properties, including the time at which TRR is at 
maximum binding and uptake and the sensitivity to detect OC in a 
cohort of mice to investigate disease diagnosis and progression.

To date, three biomarkers as measured in blood plasma or serum 
are approved by the FDA to screen for ovarian cancer: CA125, HE4, and 
MSLN. CA125 antigen is a membrane-associated mucin expressed on 
surface cells undergoing metaplastic differentiation and released within 
blood plasma. However, CA125 tests are not always recommended. 
Elevated CA125 levels are observed in only 50% of early stage patients 
and in many benign and non-gynecological conditions, thus limiting 
its sensitivity and specificity [38,39]. HE4, human epididymis protein 4, 
and MSLN, mesothlin, are approved for early stage detection of OC and 
its recurrence. HE4 is expressed in nearly 90% of serous carcinomas, 
with little or no expression for the above benign conditions. MSLN is 
associated with cell adhesion and metastasis and expressed in the early 
stages of OC. These biomarkers are also expressed on other cancers, 
including lung, endometrium adenocarcinomas, and pancreatic [39], 
and thus not specific to OC. The combination of CA125 with HE4 
or MSLN has been shown to significantly increase the specificity and 
specificity in detecting OC compared to CA125 alone. Of these three 
biomarkers, radiolabeled antibodies against CA125 antigen (OC125) 
and mucin (TAG-72) has been developed and tested in ovarian 
cancer patients. Based on clinical studies, the reported sensitivity and 
specificity for these two tracers was 80-93% and 50-75%, and 68% 
and 55%, respectively [40-42]. Other disadvantages of these tracers 
include the reporting of false-positives from nonadencarcinomatous 
malignancy, benign neoplasms and inflammatory tissue, and the poor 
pharmacokinetics of these antibody-based ligands where the optimal 
contrast-to-noise occurred 24-48 hours after injection. To overcome 
these deficiencies, a small peptide imaging agent specific to the FSH 
receptor (FSHR) was synthesized and investigated.

The follicle stimulating hormone receptor (FSHR) was chosen as 
a potential target because of its specificity to OC and overexpression 
in early-stage ovarian cancer cells and malignancy, where it has been 
shown to exert mitogenic effects and cell proliferation and associated 
with cancer stem cell properties [43,44]. Antagonists to FSHR activation 
have been postulated to enhance therapeutic efficacy by affecting 
disease progression, angiogenesis, and immune response [45,46]. 
Therefore, identifying molecular imaging agents capable of localizing 

Figure 3: The TRR for a Cohort of Ovarian Cancer Xenograft Mouse Model. 
The average TRR and its standard deviation (n=3) was calculated using NIR 
imaging (LB981 NightOWL) prior to and 6 hours post-injection of the BI-10AF750 
MI probe (80 װg).

Figure 4: In vivo NIRF Imaging of BI-10AF750. Three mice were i.v. injected 
with 80 װg of the BI-10AF750 MI probe, and NIR fluorescence images were 
acquired 6 hours post injection. A threshold was applied to better depict the 
tumors. Signals in the kidneys and bladder indicate renal filtration. No signal 
was observed in the liver at this time. An indication of tumor cell growth along 
the subcutaneous needle injection was observed in two mice (left and right).

Figure 5: NIR Optical Images of BI-10AF750 Molecular Imaging (MI) Probe. (Left) 
Displayed is the bright field image of a mouse with an ovarian tumor on its 
flank, and (Right) the corresponding fluorescence image 6 hours post-injection 
of the BI-10AF750 MI probe. The arrows depict the anatomical features of the 
mouse. 
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FSHR expression in patients with OC would have strong diagnostic and 
therapeutic value. The deca peptide (BI-10) derived from FSH-BI and 
conjugated with near-infrared fluorescence dye was investigated and 
shown to bind to ovarian cancer cells in vivo with low binding affinity 
and repeatable differential binding to ovarian tumors in mice. 

BI-10FAM and BI-10AF750 have a number of advantages as in vivo 
molecular imaging agents, such as its small size, specificity to FSHR 
(uninhibited binding of hGC), internalization via endocytosis 
pathway, negligible physiologic effects when used in low doses [47], 
and easier synthesis and conjugation to other molecules for diagnostic 
and therapeutic purposes [48]. Their small effective hydrodynamic 
diameter, high washout rates, and rapid renal filtration are highly 
valued for in vivo imaging [49], where an optimal tumor-to-reference 
tissue ratio (TRR) can be quickly reached. This was demonstrated for 
BI-10AF750, where the maximum TRR occurred within 4-6 hours after 
injection (Figure 3) due to the high tissue washout rate and rapid renal 
filtration. These results are consistent with similar sized molecular 
imaging agents [50] and significantly shorter than their monoclonal 
antibody counterparts. Repeated experiments of the BI-10AF750 probe 
(80 µg) resulted in preferential surface binding to OC tumor cells (TRR 
significantly greater than pre-injection value (P<0.01), Figure 5) and a 
small variation in TRR within a cohort of mice (10 percent) with the 
same dose and imaging protocol (TRR=1.62 ± 0.16). Based on these 
results, a minimal cohort size (e.g., five mice) can be used to achieve a 
significant TRR value (e.g., TRR>1.3; power analysis; α=0.05, β=0.8), 
and would suggest using 40 µg dose or higher (BI-10AF750) for detection 
studies (dependency on the optical depth of the tumor) and 120 µg for 
uptake studies (Figure 3). 

To quantify BI-10 binding to the FSHR cell surface receptors of 
OVCAR-3, the EC50 of the BI-10 fluoroscein conjugate (BI-10FAM) was 
measured in vitro using flow cytometry to be 160 µM. Fluoroscein was 
chosen because the flow cytometer could not operate at wavelengths 
exceeding 635 nm, which excludes AF750. However, the influence of 
the change in fluorochrome on the ED50 is not expected to significantly 
change given that the bio conjugation chemistry was the same and 
the charge and hydrophilicity in these dyes (synthesized through 
sulfonation) are similar. Compared to the radio-ligand binding assay, 
Lee et al reported an EC50 of another FSHR-rich Sertoli cells from 
Bovine Calf testes to be approximately 300 µM [29]. Various BI-
10 incubation times in two different FSHR-rich cell lines as well as 
washing procedures to remove unbound ligands in two different assays 
mainly contribute the EC50 value estimation from binding curve 
[29,51]. Although the binding measurement methodology and cell line 
selection from Lee and this study were not identical, the BI-10 binding 
curves show that BI-10 binding to FSHR is highly specific but low in 
affinity. These results are consistent with the observed dose-dependent 
tumor binding (4-6 hours; TRR=1.96, 1.59 1.39 for 120 µg, 40 µg, and 
15 µg, respectively) and uptake (48 hours: TRR=1.44, 1.29, and 1.14 
for 120 µg, 40 µg, and 15 µg, respectively), where the relatively low 
tumor uptake (48 hours) compared to surface binding peak (6 hours) is 
believed to be due to the peptide’s high dissociation rate [52,53]. 

To enhance the binding affinity and cellular uptake, multimeric 
and polymeric constructs can be synthesized by linking monomeric 
ligands with poly (ethylene glycol) lipids (PEG) [52,54,55]. 
Radiolabeled multimeric peptides for tumor imaging have been shown 
to significantly increase the binding affinity to αvβ3 integrin and Her2 
receptors, the former of which is under investigation for the potential 
clinical application to detect tumors in early stage [56-58]. Similarly, 
a polyvalent ligand consisting of multiple BI-10 peptides attached 

onto a flexible and semi-rigid linker (PEG) can lead to cooperative 
binding and an increase in receptor rebinding [59], or equivalently, a 
significant decrease the dissociation rate [53]. To optimize avidity, the 
length of the linker is designed to approximate the distance between 
two FSHR binding sites (inversely proportional to the FSHR density) 
[60,61], where the optimal linker length can be determined from the 
FSH-receptor density reported in this paper. Based upon the number 
of receptors and the average diameter of OVCAR-3 (10 µm), the 
distance between two receptors on membrane is approximately 50 
angstrom, which is consistent with other receptor systems, e.g., human 
melanocrtin receptor 4 [62]. Another second and complementary 
approach is to link two peptides that can concurrently bind to both 
the ectodomain (ECD) and trans-membrane domain (BI-10) of the 
G-protein receptor (intra-bivalency or allosteric/orthosteric dimers), 
where the former is responsible for specificity and high affinity while 
the later initiates receptor activation [30]. Other peptides targeting the 
ECD with high specificity have been reported to have binding affinities 
in the low micro-molar levels (5-20 times that of BI-10) [63], while 
non-peptide agonists report EC50 in the low nano-molar range [64]. 
For these latter compounds, their large size and complex chemical 
synthesis in addition to their agonist functionality are disadvantages. 
By combining ECD and trans-membrane peptides onto a multimer 
construct, a molecular imaging agent with sub micromolar binding 
affinities is possible.

In recent studies FSHR has been reported to play a role in 
immunotherapy of OC and tumor angiogenesis. For the latter, FSHR 
expression in endothelial cells (ECs) has been reported in a wide 
range of tumors [65,66] and demonstrated two characteristics to 
enhance therapy and improve therapeutic interventions. First, the FSH 
receptor is expressed on the luminal surface of the EC, thus allowing 
for ligand to bind to and internalize within ECs and would provide an 
effect means to target tumor vasculature in therapy. Second, the FSHR 
is preferentially expressed on the vasculature in the periphery of the 
tumor, thus defining the tumor boundary and potentially residual and 
recurrent disease after surgery or therapy. Identifying a ligand that 
could differentially bind to OC and EC expressing FSHR would greatly 
expand the diagnostic and therapeutic applications.

Ongoing research continues to investigate new promising 
biomarkers for the early detection of ovarian cancer, such as KLK6/7, 
GSTT1, PRSS8, FOLR1, and ALDH1 [67]. Of these, a ligand targeting 
the folate receptor alpha (FOLR1 or FR-α) has been developed as a 
molecular imaging agent and tested in vivo. Clinical studies have shown 
FR-α to be increased in 90-95% of patients with epithelial OC [68], with 
little normal tissue expression. When conjugated to technecium-99 
m or the fluorescence dye FITC (fluorescein isothiocyanate), 
radioscintigraphic images in mice [69] and intraoperative fluorescence 
imaging in OC patients [70] demonstrated differential specificity to 
ovarian cancer for detection and debulking of tumors, respectively. 
Clinical translation on the use of this targeted ligand remains in the 
investigation stage.

In summary, an optical molecular imaging agent was developed a 
based on the BI-10 deca peptide and demonstrated specific binding to 
FSHR expressed on ovarian cancer in vitro and in vivo with low affinity. 
From in vivo experiments in mice, the pharmacokinetics of the BI-
10AF750 was measured to have a maximum receptor binding TRR of 5-6 
hours post-injection. Based on the dose and optimal imaging time, a 
cohort of mice was imaged to demonstrate reproducibility and viability 
of TRR to monitor changes in FSHR expression. However, the relative 
high doses of BI-10AF750 and reduced uptake TRR was indicative of 
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reversible binding. Based on the receptor density measurement from 
this study, a multimeric/polyvalent construct is outlined to enhance 
binding affinity, which can be tested in future studies. These studies will 
determine the viability of this new molecular imaging agent for future 
preclinical and clinical studies in the detection and targeted therapy of 
ovarian cancer.
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