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Introduction
The genus Flavivirus of the family Flaviviridae consists of more than

70 members and many of them are transmitted through arthropods
[1]. These viruses can cause severe diseases in humans and animals [2].
This includes West Nile virus (WNV), Dengue virus (DENV), Japanese
encephalitis virus (JEV), Yellow fever virus (YFV), Tick-borne
encephalitis virus (TBEV), Murray Valley encephalitis virus (MVEV)
and St. Louis encephalitis virus (SLEV) [1]. In most cases no effective
vaccine is available and thousands of new infections are registered
annually [3,4]. To date there is only symptomatic treatment available
for infected patients [3,4].

Innate Recognition of Flaviviruses
Evidence indicates that innate immune responses play a crucial role

in the control of TBEV infection [2]. Nucleic acids are the main
pathogen-associated molecular pattern (PAMPs) recognized by the
innate immune system [5]. Sensing of PAMPs results in the control of
the first wave of viral infection through the production of antiviral
effector molecules and it contributes to the mobilization of the
adaptive immune response [5]. Double-stranded RNA of TBEV is
mainly sensed by Toll like receptors (TLRs) and Retinoic acid-
inducible gene (RIG)-I like receptors (RLRs) [6,7]. RIG-I interacts with
Interferon-β promotor stimulator-1 (IPS-1) upon activation and
triggers the activation of Interferon regulatory factor-3 (IRF-3), IRF-7
and Nuclear factor kappa-light-chain-enhancer of activated B-cells
(NF-κB), leading to the induction of type I interferons (IFNs) and
proinflammatory cytokines [7].

Many, if not all viruses, developed strategies to evade recognition by
the innate immune system [7,8]. RLR signaling is required to control
viral spread in peripheral organs and to limit virus-mediated central
nervous system (CNS) pathology in flavivirus infection [9]. WNV
appears to delay pattern recognition receptor (PRR) activation, which
gives the virus a replicative advantage within the cells during early
stages of infection [10]. TBEV was shown to influence type I IFN
responses by hiding its replication complexes inside replication vesicles
[11]. This strategy protects viral dsRNA from early detection by the
innate immune system [11]. Additionally, type I IFN responses can be
inhibited [12]. DENV actively prevents type I IFN production by the
viral NS2B3 protease which cleaves and degrades STING, whereas
TBEV restricts Signal transducer and activator of transcription-1
(Stat-1) expression by the inhibition of the IFN-α/β receptor (IFNAR)
[8,12,13]. Despite these evasion strategies, a clear correlation between
TBEV RNA and IFN-β induction was detectable [9]. Higher amounts

of viral RNA detected in the cell results in higher IFN-β production,
independent of the viral strain that is used [11].

The role of IPS-1 in Flavivirus Infection
IPS-1 plays an important role in the regulation of type I IFNs [9,14].

Both, similarities and differences between mosquito and tick borne
flaviviruses were seen in the dependency of type I IFN responses and
the adaptor protein IPS-1 in the periphery [9,14]. In the absence of
IPS-1, mice infected with WNV showed reduced specific antibody
responses and an increase in spleen size due to decreased numbers of
Tregs [14]. This indicates that IPS-1 is important for the correct
mounting of adaptive immune responses in the periphery.

In contrast, lower systemic levels of IFN-α did not influence
humoral or T cell responses in the periphery of IPS-1 deficient mice
upon infection with Langat virus (LGTV), a tick borne flavivirus [9].
Type I IFN responses seem to mediate tissue tropism in the periphery
of WNV infected mice due to expression of specific antiviral effector
genes [15]. We detected a change in tissue tropism in the periphery of
IPS-1 and IFNAR deficient mice compared to WT animals after LGTV
infection [2,9]. Therefore, viral attachment and entry into cells via
receptors might not be the only factor determining viral tropism of
neurotropic flaviviruses. Instead, tissue tropism seems to be mediated
also by the type I IFN system [2,9].

Viremia is a critical determinant in CNS entry [2]. In the absence of
IPS-1, both WNV and LGTV infection led to increased viral titers and
enhanced neuroinvasion [9,14]. One of the most important barriers to
restrict entry into the CNS is the blood brain barrier (BBB) [16]. Some
viruses like WNV mediate a breakdown of the BBB to achieve entry
into the CNS [17]. Other viruses, e.g. TBEV, LGTV and JEV have been
observed in the brain already before the BBB was affected independent
of an intact type I IFN response [2,9,18,19]. Very little is known about
pathways that TBEV uses to enter the CNS, but we assume that
differences exist between neurotropic flaviviruses. Our results show
that low pathogenic LGTV primarily infects the olfactory bulb (OB) of
the CNS after peripheral administration [9]. The virus was completely
restricted to the olfactory system and cleared by the innate immune
system without involvement of the adaptive immune response [9].
TBEV targets the OB early in infection, however, similar to SLEV, more
pathogenic virus strains are able to spread to other brain parts [20].
Interestingly, in contrast to WNV, where direct infection of the CNS
leads to equal distribution of the virus to different brain regions [21],
direct administration of LGTV and TBEV into the brain showed
higher viral replication in the olfactory bulb and the cerebrum
compared to brain stem and cerebellum [9]. This indicates site specific
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viral replication in different parts of the brain [9]. For most viruses,
IPS-1 dependent IFN-β induction was shown to be distinct between
analyzed cell types [9,11]. We have previously demonstrated that
upregulation of IFN-β in A549 cells strictly depends on virus
replication and that enhanced level of IFN-β rely on IPS-1 in mouse
embryonic fibroblasts (MEFs) [11,22]. In vivo, IPS-1 deficient mice
displayed increased LGTV replication in all brain regions [9].
Normally, higher viral replication in the brain also results in higher
IFN-β expression. Interestingly, higher viral replication in the OB
resulted in lower IFN-β levels compared to WT mice [9]. This indicates
that IFN-β upregulation in the OB is more dependent on IPS-1
compared to other brain parts [9].

Conclusion
It is becoming clear that different brain regions vary in their

response to infection. This might have an impact on the severity of
infections and therefore survival of the host. In this line, different brain
regions depend on disparate PRRs for the upregulation of type I IFNs,
which can lead to favored viral replication sites. However, which cell
types within the CNS contribute to regional differences in the IFN
response is currently under investigation.
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