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Editorial
Neurobehavioral disorders are a significant and growing health,

economic and social problem worldwide. Age-related
neurodegenerative disorders contribute significantly to this growing
problem because of increased longevity in the population. Parkinson’s
disease (PD) is the second most common neurodegenerative disorder
after Alzheimer’s disease, affecting 1% of the population over 60 yrs
[1]. It is marked clinically by motor dysfunctions, e.g., resting tremor,
bradykinesia and rigidity and pathologically by α-synuclein-positive
Lewy bodies and nigrostriatal dopamine neuron loss in the substantia
nigra pars compacta (SNpc) of the basal ganglia (BG) [2]. Despite a
growing number of associated genetic factors, the exact cause(s) for
PD are unknown [3]. Because the majority of PD patients do not have
a family history and identical twins are often discordant for the
disease, there is increased interest in the role that environmental and
occupational toxicant exposure may play in PD aetiology [4-8]. For
example, previous studies reported that exposure to well water,
pesticides, herbicides and certain metals such as manganese (Mn), iron
(Fe), lead (Pb) and mercury (Hg), or occupations like welding and
farming, were associated with developing Parkinsonian symptoms [6],
a clinical syndrome that presents both in PD and a number of look-a-
like disorders.

Since Couper [7] first reported Mn-induced Parkinsonism in 1837,
significant effort has been exerted to determine potential links between
Mn-induced neurotoxicity and PD. Recent studies reported that Mn-
exposed workers had a higher prevalence of Parkinsonian features
compared to unexposed workers [9,10] and the Parkinsonian motor
symptoms exacerbated with cumulative long-term Mn-exposure [11].
Welders have been among the most studied occupational groups since
Mn is one of the major elements in many types of welding fumes [12]
but several metals including Mn, Fe and Cu also may be at high
concentrations and may co-influence the exposure-related
neurotoxicity [13]. Both PD and welding-related neurotoxicity share
common motor symptoms such as bradykinesia and rigidity, but they
present distinguishable clinical features as well, e.g., welders display
rapid postural rather than resting tremor, early development of gait
and balance problems and a lack of response to levodopa therapy (the
most common drug therapy for PD [5,7]. Thus, welding- (or Mn-)
related Parkinsonian symptoms actually are not similar to idiopathic
PD.

Recent studies using both neuroimaging and neuropathology have
suggested some possible underlying neural mechanisms. For example,
in PD, PET and SPECT imaging shows lower dopamine neuron
function (i.e., lower flurodopa uptake and dopamine release) and
terminal density (i.e., DAT) in key pathological areas like the dorsal
striatum, but preserved or even increased postsynaptic D2 receptor
raclopride binding [14,15]. Mn-exposed workers and animals,
however, presented opposite imaging patterns. There are normal
flurodopa uptake and DAT density, decreased dopamine release and
D2 receptor raclopride binding in the striatum [16-18] and no decrease
in numbers of SNpc neurons [19]. Such data suggest that welding-
related neurotoxicity may be associated with a dysfunctional dopamine
system, rather than degeneration in nigrostriatal neurons, although
further investigation is needed to determine if the animal models are
relevant to human exposure.

Over the past decade, MRI techniques have become invaluable tools
in understanding Mn neurotoxicity due to its noninvasiveness. For
example, Mn is paramagnetic and its brain accumulation is associated
with higher T1-weighted intensity and/or T1 relaxation rate [R1: 1/T1]
[20,21]. The T1 signal changes are greatest in the globus pallidus [GP;
22,23], whereas no increased T1 signal is seen in the GP of PD [24].
Elevated T1 signals, however, typically go back to baseline levels within
6 months after welding cessation, whereas welding-related
neurobehavioral symptoms may persist [25-29]. This suggests T1
signals are less reliable as a long-term marker of welding-related
neurotoxicity. Thus, there have been efforts to search for MRI markers
that may reflect neuropathological processes more robustly.

Diffusion tensor imaging [DTI] measures the random translational
motion of water molecules [30] and has shown promise as a tool for
assessing tissue microstructural organization or potentially neuronal
cell death. In the MPTP PD mouse model, DTI changes were
correlated with dopamine neuron loss in the SN [31]. Furthermore,
several human studies have demonstrated reduced DTI fractional
anisotropy (FA) values in the SN of early PD patients, consistent with
the exciting notion that DTI changes may detect microstructural
changes due to cell loss [32-35].

Previous studies in welders reported altered overall diffusion
magnitude in the GP. Moreover, a recent study demonstrated reduced
DTI FA values in the GP of asymptomatic welders that were associated
with a long-term welding exposure measure even in the absence of
clear differences in T1 signals at the time of measurement. Although it
is not clear whether the observed DTI changes in the GP reflect
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microstructural changes due to compromised dopaminergic systems,
this MRI modality may serve as a useful long-term marker to assess
welding-induced microstructural changes and help further dissociate
them from PD.

Overall, the current clinical, pathological and neuroimaging
findings suggest that welding-related neurotoxicity is distinct from PD.
It is possible; however, that Mn-exposure may contribute to an atypical
presentation of idiopathic PD and further research can ultimately lead
to better diagnoses and treatment.
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