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Abstract
Background: Finding the underlying gene regulatory mechanisms for complex diseases is essential for systems 

biology. The dynamic mode decomposition is adopted in this article to unveil the coherent dynamical patterns that 
correspond to viral recognition receptors in time-course gene expression profiles after injection of the Influenza A 
virus.

Results: The eigenvalues, dynamic modes, and amplitudes provide sufficient clues for distinguishing the 
symptomatic influenza infection individuals from the asymptomatic ones. The symptomatic individuals have a total of 
20 dominant modes having positive real eigenvalues, implying a monotonic increase of the receptor response due 
to the replication of the virus. The asymptomatic individuals have only two real positive eigenvalues, corresponding 
to the receptors that activate the innate immune response promoting viral clearance.

Conclusion: If the time-course gene expression profiles are available, one can straightforwardly extend this 
approach to other diseases, such as COVID-19.
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Background
In a cell a single gene may take part in expressions of several or even 

many genes, and a gene’s expression is usually regulated cooperatively 
by a set of genes [1]. The genes are integrated by the regulations into 
a gene regulatory network [1-12], through which they realize their 
roles in various cellular processes and pathways. As a response to the 
signals from the environments and/or the intrinsic cellular processes, 
the gene regulatory network will adjust the expressions of the genes 
[2]. The records for all expressions will form a multivariate time series. 
Identifying the dynamical patterns in the gene expression time series is 
subsequently an essential task since the invention of the high-through-
out technique [13-15]. It can not only shed light on the underlying 
molecular-level mechanism for the processes occurring in the cell, but 
also be helpful in intervention, regulation, and even control of the cell’s 
life. Herein one meets a typical problem called curse of dimensionality.

In each specific measurement, the micro-array can provide us 
simultaneous expressions for more than ten thousand genes [16]. 
However, the number of sampling in the interested time duration can 
reach only to several tens due to technical limitation. One solution is to 
reduce the dimension by decreasing the redundancy of the expressions, 
such as the clustering and the mixed-effect modeling techniques, and 
describe the dynamical process with ordinary differential equations 
in the low-dimensional space [17,18]. The procedure for dimension 
reduction involves a serial of steps for clustering, smoothing, regulation 
identification, parameter estimates refining, and function enrichment 
analysis, each of which implies loss of information. For instance, in 
gene clustering [19], the correlations between genes are calculated, 
but the causal and effect information is lost. An alternative solution 
is to simplify the regulations by means of representing them with, 
for examples, the cross-correlations between gene expressions or 
several logical states [20-23]. The simplification leads also to serious 
loss of information or expensive computations. For instance, in the 

Boolean model the gene expression levels are simply coarse-grained 
into two states (on and off) [4,5], in which the time-course nature of 
gene expression profiles are not efficiently taken into account. In the 
Bayesian network [8,24], different types of data and prior knowledge are 
combined with the Bayes’ rule to find the optimization solution from 
many combinatory candidates, implying usually a high computational 
cost. The vector auto-regressive and state-space models [2,25] are also 
discrete ones, requiring equally spaced and intensive time series to 
obtain reliable inference of parameters. Actually, in most practice cases, 
due to the complications in computations and theoretical justifications, 
only the first-order and linear auto-regressive model is adopted [26]. 

Recent years have witnessed a rapid development of the Dynamic 
Mode Decomposition (DMD) [27-30]. It is a pure data-driven 
technique designed to identify the low-dimension coherent structures 
in dynamical processes’ for high-dimensional systems. Let us consider 
the dynamical process of a complex system. When the interested time 
duration is so short that the intrinsic condition keeps unchanged, 
it is reasonable to assume the dynamical process follows an identical 
law [27]. Though the dynamical process is generally nonlinear and 
complex, when the time interval between two successive sampling is 
small enough, it is reasonable to approximate the following state with 
by a linear transformation of the present state, i.e., the dynamical law 
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freely downloaded from the GEO database in NCBI website, also 
refer [31,32]. A cohort of 17 healthy human volunteers received an 
intranasal injection of influenza H3N2/Wisconsin (four different 
doses). The total genes available on whole peripheral blood drawn 
from each individual at 16 sequences of time-course gene expressions 
are 11961. Each sequence covers a duration of 132 h including 15 
measurements at 0,5,12,21,29,36,45,53,60,77,84,93,101,108 h post-
injection (hpi) and one measurement taken 24 h before injection 
(-24 hpi). The individuals 8,13,17 have missed values at the sampling 
points 21,(-24,36),36, respectively. The absent value is estimated to be 
the median of its two neighboring expression values. We describe the 
original expressions for the k th−  individual with a matrix kS  , whose 
specific entity ( , ), 1, 2,3,....,11961; 0,1,2,3,...,15kS i m i m= =   is the original expression 
level for the i th−  gene in the m th−  time point. We conducted dynamic 
mode decomposition in each individual gene expression matrix  kS , 
and the individuals with at least one positive eigenvalue is symptomatic 
(unstable) otherwise is asymptomatic (stable). We found a total of  9 
individuals numbered 2,3,4,5,6,7,8,13,17 are symptoms and the other 
8 numbered 1,9,10,11,12,14,15,16 are asymptomatic. The numbers 
of symptomatic and asymptomatic after influenza A injection are 
equivalent to the numbers reported in [31,32].

Subsequently, for conducting the DMD in collectively symptomatic 
(asymptomatic), we unite the expression profiles of 9 symptomatic (8 
asymptomatic) into a single gene expression profile (matrix)  ( )I HS S

,whose entity becomes 
9 16( , ), 1, 2,....,11961; 1,2,3,..., 144

8 16( , ), 1, 2,....,11961; 1,2,3,...,
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for the i th−  gene in the m th−  expression level. Figure 1 is the heat-
map of the gene expression profile data samples (left) and the extracted 
symptomatic and asymptomatic individual’s matrices (right).

Dynamic mode decomposition of the time-course expressions

The normalized gene expression profile of the collective 
symptomatic (asymptomatic) individuals denoted by matrix I(H), 
whose entity corresponding to ( ( , ) (., )( , ) ( , )[H( , )]

[ (., )]
k k

k
k

S i m S mS i m reads I i m i m
std S m

− <
=  i=1,2,3,...,11961. 

Herein, (., )kS m< >  and [ (., )]kstd S m   are the mean and standard deviation 
of the gene expression levels with respect to the dummy variable (∙), 
i.e., the genes? A reasonable assumption is that all the transitions 
between successive expression levels can be mimicked by an identical 
linear relation Α. Let us denote the symptomatic (asymptomatic) gene 
expression levels at the m th−  point with ( , )[H( , )]I i m i m   (the m th−  column 
in [ ]I H ), we have,

 0[ (:,0), (:,1), (:, 2), (:,3),......, (:,142), ] ,I I I I I I≡

 1[ (:,1), (:, 2), (:,3), (:, 4),......, (:,143), ] ,I I I I I I≡

 1 0II A I≈

0[H(:,0),H(:,1),H(:, 2),H(:,3),......,H(:,126), ] H ,≡

1[H(:,1),H(:, 2),H(:,3),H(:, 4),......H(:,127), ] H ,≡

1 0H HA H≈

: represent index of all genes, i.e., 1,2,3,...,1196.

A simple computation for symptomatic leads to  †
1 0IA I I≈ , where † 

denotes the Moore-Penrose pseudoinverse of the dummy variable (∙) . 

can be quantitatively described by the matrix corresponding to the 
linear transformation, called evolutionary matrix.

The DMD paves a path to find the collective patterns from 
microscopic to macroscopic time scales stored in high-dimensional 
data, without the loss of information. It provides us also the dominated 
coherent structures at each sampling point. It is well-known that a 
complex biological function is usually realized by the co-operations 
between several or more genes, and a complex disease is closely related 
with several or more genes. Hence, the dynamical collective patterns 
detected by the DMD may deepen our understandings of various 
biological functions and diseases. Some gene expression profile series 
have been reported, i.e., all the expressions of interesting genes are 
measured simultaneously at successive time points.  

For instance, the response of a total of 17 volunteers to the injection 
of H3N2 virus is reported in the famous data-base https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE30550. Before the injection, 
the gene expressions for each volunteer are measured as a reference.

After the injection, the gene expressions for all the volunteers are 
measured per eight hours. The experiment lasts a total of five days, in 
which nine individuals become patients with significant symptoms and 
the others keep healthy [31,32]. The records for each specific volunteer 
form a multivariate time series with 11961 rows and 16 columns. Each 
row corresponds to a specific gene, and each column a specific sampling 
time point. Going further to the peak symptom time analysis reported in 
Zaas, et al. [31] and the report of an hour-by-hour detailed view of host 
immune response as a continuum, spanning the time from exposure to 
peak symptom manifested by Huang, et al. [32]. In this work, the DMD 
is adopted to identify the collective dynamical patterns of symptomatic 
and asymptomatic individuals in these gene expression series.

Technically, the successive columns for the gene expression time 
series are linked with an identical evolutionary matrix, respectively. 
A standard procedure of DMD [33,34] is then used to reduce the 
dimension of the evolutionary matrix, the eigenvectors for which 
are called dominant DMD modes, whose characteristic time scales 
are determined by the corresponding eigenvalues. The amplitude 
for each specific mode quantifies its influence. It is found that the 
spectral components distinguish successively the symptomatic 
from the asymptomatic individuals. The highest dominant mode of 
the asymptomatic individuals has lower amplitude than that of the 
symptomatic individuals. The eigenvalues of the collective symptomatic 
individuals correspond to stable DMD modes except 20 eigenvalues, 
and that for asymptomatic individuals have two unstable temporal 
modes. The dominant patterns turn out to correspond to the recognition 
receptor genes, e.g., the Protein Disulfide Isomerase family A member 3 
(PDIA3), Histone cell cycle regulator (HIRA), G protein subunit alpha 13 
(GNA13), S100 calcium binding protein P (S100P), Ribosomal Protein 
L36a pseudogene 37 (RPL36AP37), Keratin 1 (KRT1), Endoplasmic 
Reticulum Aminopeptidase 2 (ERAP2), X Inactive Specific Transcript 
(XIST), Retinoic acid-Inducible Gene-I (RIG-I)-Like Receptors (RLRs) 
[35-37], Toll-Like Receptors (TLRs) [38,39], Nucleotide-binding 
Oligomerization Domain (NOD)-Like Receptors (NLRs) [35,40-42], 
which are causal for transcriptional response to other genes sharing the 
features like innate immunity response. 

Materials and Methods 
Data and pre-processing

The data GSE30550 for a human influenza challenge study was 
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It can be estimated by minimizing the Frobenius norm of the difference 
2

1 0 1 1
, p qerror error

I imi m
I A I I I

= =
− ≡ ∑ ∑  . 

The operator AI is a matrix with a size of 11961 × 11961, implying 
that it has a total of 11961 eigenvalues and corresponding eigen-modes. 
To preserve (discard) the eigen-modes reflecting the macroscopic 
behaviors (microscopic details from noises and occasional events) of 

0I , the Singular Value Decomposition (SVD) is adopted the detailed 
of SVD see in [33,34] and depicted in Figure 2, i.e.,  *

0 r r rI U Vσ≈ , where * 
denotes the complex conjugate transpose, r refers to the number of the 
preserved rank of the data matrix and it is less than or equal to minI 
(11961,143)=143. The same procedure were used for HA . Discarding, 
reduces the number of operations in subsequent steps, but care takes 
to avoid discarding relevant parts of the dynamics. More details 
about discarding with examples and advanced strategies are available 
in [29,43,44]. In this work, we discarded the negative log scale of the 
singular values ~

I I IA W W= . 

Using the component of the SVD, the operator AI   approximated 
as 1 *

1I r r rA I V Uσ
−

−= , but the size of matrix IA   is still 11961 × 11961. A low-
dimensional is efficiently performed by projecting using the first r left 
singular vectors ( rU ). The reduced operator defined to be 1 *

1I r r rA I V Uσ
−

−=

, whose eigen-decomposition read,  ~

I I I IA W W= Λ , where the columns of 
r r

IW C ×∈   and the diagonal entries of  r r
I C ×Λ ∈  are the eigen-modes and 

the eigenvalues of  ~
( )IA  , respectively. Then, IW  is used to approximate 

the DMD mode (dynamic mode) of IA , i.e., the approximated dynamic 

mode corresponding to the lm is, 1
1(:, ) (:, )I r r Im I V W mϕ σ −= , where   (:, )IW m  is 

the m th−  column of  W .

The dynamic modes describe how gene are related (each gene 
expression in gene expression profile). Within a single dynamic mode, 
the magnitude of each element in a column ( (:, ))I mϕ  provide a measure 
of gene’s expression participate in the mode. The DMD eigenvalues 
can also be converted to continuous time eigenvalues by,  log( )m

m t
λω =
∆  

, where t∆  is the difference between two successive  points. The 
continuous eigenvalues can be interpreted by their corresponding real 
and imaginary part i.e.,  m m mω β λ= ± . The real part regulates the growth  
( 0)mβ >  or decay   ( 0)mβ <  of the dynamic modes. The imaginary part 
indicates the frequency  (f )m  of oscillation in the mode. Then, by using 
the approximate eigen-decomposition, we obtain a coupled gene-
temporal model,

 (t ) mt
dmd m I II bφ= Ω . 

 Following the same simple computation used for united 
symptomatic individuals, we obtain the dynamical patterns and 
thecoupled gene-temporal model for united asymptomatic individuals:  

(t ) mt
dmd m H HH bφ= Ω , the matrix 11961 11961( )I H Cφ φ ×∈ , and   ( )I Hb b  is a set of 

weights satisfying I(:,0) [ (:,0) ]I I H Hb H bφ φ= =  generally  ( )I Hφ φ  is not a square 
matrix so that  † †(:,0)[ (:,0)]I I H Hb b Hφ φ= = . Note that entries of  ( )I Hb b  are 
coefficients of the linear combination of I(:,0)[ (:,0)]H  in the eigen-modes 
basis, called DMD amplitudes

Figure 1: Heat map of the gene expression profile, P24 (h) is the gene expression data of 24 h before injection of H3N2 viruses, and the rest is the time point after 
injection. Each measure replaced by normalized gene’s transcription response to have zero mean and unit standard deviation (in the left), red color represent 
the positive (up-regulated) and green color is negative (down-regulated). Moreover the intensity of color represent the measure magnitude. The heat-map of the 
merged symptomatic (I) (asymptomatic (H)) individuals is in the upper (bottom) right. 



Citation: Semba S, Wan H, Gu C, Yang H (2023) Dynamical Patterns in Gene Expression Proile After Inluenza A Virus Injection. Diagnos Pathol Open S13:003.

Page 4 of 8

Diagn Pathol Open, an open access journal Volume 8 • Issue S13 • 1000003

of eigenvalues wk, used to approximate the genes expression levels. 
The panel (c) is the magnitude of real part eigenvalues, plotted in a 
histogram, showing the gene expression growth in each gene. We 
found two positive real part eigenvalues, one has 0.0037 magnitude 
and the other has the magnitude 0.0005. The DMD modes which are 
composed of weightings of the 11961 genes, and the high resolution of 
the first five dominant modes in genes 1 3 5 7 94000 4010[ (x), (x), (x), (x), (x)]φ φ φ φ φ−  are 
highlighted in the panel (d),  2 4 6 8 10(x), (x), (x), (x)and (x)φ φ φ φ φ  (not shown) are 
conjugate to 1 3 5 7 9(x), (x), (x), (x)and (x)φ φ φ φ φ , respectively. Modes of each gene and 
their high resolution of the first 9 dominant modes in genes 4000-4010, 
demonstrated in the panel (e). As shown in Figure 4a, all the log scale 
singular values are greater than zero, implies that no noisy information 
in the health individuals genes expression profile, but Figure 3a which 
is the singular values from the infected individuals genes expression 
profile had four noisy information represented by an open circles. The 
eigenvalues for both Figures 3a and 4b are mostly distributed in the 
negative real part and are symmetric distributed in the imaginary part, 
showing that most of the DMD mode decayed and have controlled with 
oscillation. However, as shown in Figures 3c and 4c, the symptomatic 
individual contain more real positive eigenvalues with large magnitude 
comparing to asymptomatic individuals genes expression profile. 
The higher resolution between 4000-4010 gene-modes shows that in 
each gene mostly contains both the negative and positive modes for 
symptomatic while for asymptomatic mostly has only one sign (negative/
positive) mode (see the higher resolution in Figures 3a and 4e). The 
magnitude of the modes for symptomatic and asymptomatic individuals 
are in the interval (-0.4,0.4) and (-0.1,0.1), respectively as shown in 
Figures 3a and 4e. What is more, for symptomatic we unveiled 6543 

Results and Discussion
For symptomatic individuals, Figures 3a-3e, illustrate the DMD 

decomposition of 11961 genes in united 9 symptomatic individuals 
over 144-gene expression levels. The top left panel (a) is the log scale 
of the singular values decomposition. Specifically, the singular value 
decomposition produces a diagonal matrix whose the leading elements 
establish the modes with maximum variance. Four open circles are 
the noisy modes which were discarded. The panel (b) illustrate the 
distribution of eigenvalues ωk, showing the modes which have growth, 
decay and/or oscillatory control. The solid circles represent the 
dominant modes which are used in the solution ( ) (x)exp( )K

dmd k k kk
X t t b tφ ω=∑  

to approximate the genes expression levels. The panel (c) considered the 
magnitude of real part of eigenvalues, plotted in a histogram, showing 
the gene expression growth in each gene. We found 20 positive real part 
eigenvalues, where 12 distributed in the interval (0,2) and 8 in the interval 
(2,4). The DMD modes patterns which are composed of amplitudes 
(mode-values) of the 11961genes, and its high resolution of the first five 
dominant gene-modes between 1 2 4 6 84000 4010[ (x), (x), (x), (x), (x)]φ φ φ φ φ−   
are highlighted in the panel (d), 3 5 7 9(x), (x), (x)and (x)φ φ φ φ   (not shown) 
are conjugate to 2 4 6 8(x), (x), (x)and (x)φ φ φ φ , respectively. The panel (e) 
demonstrate modes of each gene and their high resolution of the first 9 
dominant gene-modes between 4000-4010.

For asymptomatic individuals, Figures 4a-4e, illustrate the DMD 
decomposition of 11961 genes in united 8 asymptomatic individuals 
over 127-gene expression levels. The top left panel (a) is the log scale 
of the singular values decomposition. Panel (b) is the distribution 

Figure 2: SVD of symptomatic 0( )I   (asymptomatic 0(H )   matrix.   is the coordinates of the i th−  gene in the coordinate system of the scaled eigengene, '.m m mV tσ  
contain the coordinates of the  m th−  time points in the basis of the scaled eigen-time points, m mUσ   and 143(127) is the dimension of  0 0(H )I . 



Citation: Semba S, Wan H, Gu C, Yang H (2023) Dynamical Patterns in Gene Expression Proile After Inluenza A Virus Injection. Diagnos Pathol Open S13:003.

Page 5 of 8

Diagn Pathol Open, an open access journal Volume 8 • Issue S13 • 1000003

and for asymptomatic the unstable modes with values >0.06 turn 
out to correspond to the Keratin 1(KRT1), Endoplasmic Reticulum 
Aminopeptidase 2(ERAP2), and X Inactive Specific Transcript (XIST). 
The instability of the gene-modes to symptomatic individuals, implies 
that the correspond genes it recognizes the influenza virus and may 
play a role in the etiology of respiratory viral infections. The instability 
of the gene-modes to asymptomatic individuals, implies that it detect 
the presence of influenza virus and may mediate viral clearance. 

components of the dominant modes with positive values, equivalent to 
54.7% components mode patterns while for asymptomatic we obtained 
6495 modes with positive mode-values, equivalent to 54.3% out of 
11961 mode patterns. Interestingly, for symptomatic the modes with 
values >0.9 turn out to correspond to the Protein Disulfide Isomerase 
family A member 3 (PDIA3), Histone cell cycle regulator (HIRA), G 
protein subunit alpha 13 (GNA13), S100 calcium binding protein 
P (S100P), Ribosomal Protein L36a Pseudogene 37 (RPL36AP37) 

Figure 3: DMD decomposition of 144-genes expression levels of 9 symptomatic individuals. A. The top left panel (a) shows on a log scale, the information 
captured in each mode from the SVD decomposition  (log( ) 0)kσ <  where  kσ  are the diagonal elements of σ). The log( ) 0kσ <  with open circles discarded 

as the noisy information. B. The panel (b) is the 143 eigenvalues ( )kω   of each mode in which the dominant represented by the solid circles used in the 

solution  ( ) (x)exp( )K
dmd k k kk

X t t bφ ω=∑ . Eigenvalues with  0kω >  represent the growth modes. C. The panel (c) is the histogram DMD distribution of real positive 

eigenvalues (real ( ) 0kω >  ). D. The panel (d) shows the DMD modes ( (x))kφ   and the first 5 high resolution mode of the genes between 4000-4010. E. Panel 
(e) is the DMD mode in each gene and the high resolution of the first 9 DMD modes of the ten genes between(4000-4010).
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Figure 4: DMD decomposition of 128 genes expression levels of 8 asymptomatic individuals in the 11961 genes. A. The top left panel (a) shows, on a log scale, the 

information captured in each mode from the SVD decomposition (log( ))kσ   where sk are the diagonal elements of  σ . B. Panel (b) is the 127 eigenvalues   ( 0)kω >  
used in the solution  ( ) (x)exp( )K

dmd k k kk
X t t bφ ω=∑ . Eigenvalues with  0kω >  represent the growth modes. C. The panel (c) is the histogram DMD distribution of eigenvalues  

( 0)kω > . D. The top right panel (d) shows the DMD modes ( (x))kφ   from the 11961 genes and the first 5 high resolution mode of the genes between 4000-4010. E. 
Panel (e) is the DMD mode in each gene and the high resolution of the first 9 DMD modes in each gene of the ten genemodes (4000-4010).



Citation: Semba S, Wan H, Gu C, Yang H (2023) Dynamical Patterns in Gene Expression Proile After Inluenza A Virus Injection. Diagnos Pathol Open S13:003.

Page 7 of 8

Diagn Pathol Open, an open access journal Volume 8 • Issue S13 • 1000003

prospects and limitations. J Roy Soc Inter 5:S85-S94. 

6. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian 
networks to analyze expression data. J Comp Biol 7:601-620. 

7. Hartemink AJ, Gifford DK, Jaakkola TS, Young RA (2000) Using 
graphical models and genomic expression data to statistically validate 
models of genetic regulatory networks. Biocomp 7:422-433. 

8. Imoto S, Kim S, Goto T, Aburatani S, Tashiro K, et al. (2003) Bayesian 
network and nonparametric heteroscedastic regression for nonlinear 
modeling of genetic network.  J Bioinform Comp Biol 1:231-252. 

9. Zou M, Conzen SD (2005) A new Dynamic Bayesian Network (DBN) 
approach for identifying gene regulatory networks from time course 
microarray data. Bioinform 21:71-79. 

10. Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR (2007) A primer 
on learning in Bayesian networks for computational. PLoS Comput 
Biol 3:e129. 

11. Werhli AV, Husmeier D (2007) Reconstructing gene regulatory 
networks with Bayesian networks by combining expression data with 
multiple sources of prior knowledge. Stat Appl Gen Molec Biol 6:86-
95. 

12. Heckerman D (2008) A tutorial on learning with Bayesian networks. 
Innov Bayes Net 7:33-82. 

13. Holter NS, Maritan A, Cieplak M, Fedoroff NV, Banavar JR (2001) 
Dynamic modeling of gene expression data. Proc Natl Acad Sci. 
98:1693-1698. 

14. Linel P, Wu S, Deng N, Wu H (2014) Dynamic transcriptional signatures 
and network responses for clinical symptoms in influenza infected 
human subjects using systems biology approaches. J Pharmacokinetic 
Pharmacody 41:509-521. 

15. Holter NS, Mitra M, Maritan A, Cieplak M, Banavar JR, et al. (2000) 
Fundamental patterns underlying gene expression profiles: simplicity 
from complexity. Proc Natl Acad Sci 97:8409-8414. 

16. Tarca AL, Romero R, Draghici S (2006) Analysis of microarray 
experiments of gene expression profiling. American J Obstetr Gynec 
195:373-388. 

17. Wu S, Liu ZP, Qiu X, Wu H (2014) Modeling genome-wide dynamic 
regulatory network in mouse lungs with influenza infection using high-
dimensional ordinary differential equations. PloS one 9:e95276. 

18. Lu T, Liang H, Li H, Wu H (2011) High-dimensional ODEs coupled 
with mixed-effects modeling techniques for dynamic gene regulatory 
network identification. J American Stat Assoc 106:1242-1258. 

19. McDowell IC, Manandhar D, Vockley CM, Schmid AK, Reddy TE, et 
al. (2018) Clustering gene expression time series data using an infinite 
Gaussian process mixture model. PLoS Comput Biol 14: e1005896. 

20. Hou J, Ye X, Feng W, Zhang Q, Han Y, et al. (2022) Distance correlation 
application to gene co-expression network analysis. BMC bioinform 
23:1-24. 

21. Mortezapour M, Tapak L, Bahreini F, Najafi R, Afshar S (2023) 
Identification of key genes in colorectal cancer diagnosis by co-
expression analysis weighted gene co-expression network analysis. 
Comput Biol Med 106779. 

22. Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression 
network for global discovery of conserved genetic modules. Science 
302:249-255. 

Conclusion
The DMD discards the microscopic details from noises and 

occasional events and preserves the macroscopic information of 
the gene expression profile data. It decouples the measure of the 
gene’s occurrence positions and transcription responses from the 
environmental conditions and or disease state. In this work, first, we 
conducted the DMD in each gene expression profile to distinguish 
the infected and healthy individuals by considering the existence 
of at least one real positive eigenvalue as a detector for an infected 
symptomatic individuals after the H3N2 injection. It found nine 
infected symptomatic individuals, and the remaining eight are healthy. 
Then, we unite the infected (healthy) into one gene expression profile 
for collective symptomatic (asymptomatic) pattern extractions.

The patterns obtained correspond to the recognition receptors. 
For example, in collective symptomatic individuals, 20 eigenvalues 
are positive and correspond to growing modes, i.e., it has positive 
dominant DMD modes, corresponding to an increase of the receptors 
(PDIA3, HIRA, GNA13, S100P, RPL36AP37) response triggered by 
the replication of the virus and generating exacerbated local immunity 
responses resulting in acute infection and increased pathogenesis. In 
the collective asymptomatic individuals, two eigenvalues are positive 
with positive dominant modes, corresponding to the receptors (KRT1, 
ERAP2, XIST) response that activates the innate immune response 
and subsequently promotes the viral clearance. As mentioned in the 
introduction, Huang, et al. reported the analysis of genes expression 
profile after influenza A injection and the active genes reported are 
concordant with those found in Zaas, et al. report. We have compared 
the genes found by Huang, et al. with the genes corresponding to the 
positive components of DMD modes found in this paper. There exists 
almost non-overlap between those genes. We hope in future work one 
can get some interesting findings by comparing the biological functions 
of the genes found in this paper with those listed in Huang, et al. report. 
A Deep understanding of these patterns distinguishes the symptomatic 
from the asymptomatic in influenza A virus and sheds new light on 
emerging acute respiratory distress like a currently novel Coronavirus 
disease-19. Hence, if the time-course gene expression profile is available. 
one can straightforwardly extend this approach to other diseases, such 
as cancer and COVID-19.
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