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Abstract

Resting eggs are important phases in the life strategy of many coastal and estuarine copepods. The egg mortality
in the sediment layers where they are buried, as well as re-suspension from the sediment into the water column
where eggs may hatch are factors that affect the success of this life strategy. Considering that fishing effort in some
coastal areas is high and trawling leads to re-suspension of the bottom sediments, it is important to understand
these effects on the biology of organisms that utilize sediment habitats in part of their life cycle.

This study examined the re-suspension and the hatching success of copepod resting eggs in the wake of two
different demersal fishing gear components (doors and discs) that are in contact with the seabed, in two areas off
the coast of Scotland that are rarely worked by fishermen. Sediment cores were taken and analysed for resting eggs
quantity and hatching performance and compared with samples taken in the water column right after re-suspension
of sediment by the gear components. This study demonstrated for the first time that although eggs are re-suspended
in the water column together with the sediment, providing them with the opportunity to hatch and recruit nauplii to
the pelagic, egg viability was reduced by the passage of the gear components. This study also suggests that the
viability is dependent on the gear component and accordingly potential effects must be considered for at this level.

Keywords: Copepod resting eggs; Sediment cores; Hydrodynamic;
Benthic habitat

Introduction
Resting eggs are produced by around 50 species of calanoid

copepods [1,2] and are known to be produced to survive harsh
environmental conditions [3]. The roles of these eggs in the life cycle
of many ecologically important species are often underestimated
despite a seasonal occurrence of species disappearance from the water
column [4,5]. Different types of resting eggs have been described in the
literature and represent different types of survival strategies. There are:
immediate survival strategies (quiescent eggs), short-term resting
strategies (e.g. delayed hatching eggs), and long-term survival
strategies (diapause) where eggs accumulate in the sediment as an egg
bank, saving these genes for the future [6-10]. It is, however, difficult
to separate eggs according to these categories when sampled from the
sea bed because diapause and delayed hatching eggs for which
hatching is maternally controlled may lie in the sediment under
quiescence once their refractory period is over. Also, morphological
approaches for the identification of eggs often produce contradictory
results and therefore must be used cautiously [11-13].

Eggs in the sediment may be subject to predation, infection and
senescence, [14]. However, these eggs may also be released from their
resting stage after re-suspension in the water column following the
mobilization of sediment as a result of anthropogenic, physical and
biological disturbances [15].

Demersal trawl fishing is one of the most widespread anthropogenic
activities that affect the seabed. Towed demersal fishing gears can

significantly impact the benthic ecosystem and many previous studies
have shown that such gears can damage benthic organisms, alter the
benthic habitat and sediment structure [16,17]. The physical
interaction of towed demersal gears and the sea bed can be broadly
classified as being either geotechnical or hydrodynamic in nature [18].
The penetration, piercing and lateral displacement of the sediment can
be considered to be geotechnical [19] and the associated pressure and
shearing forces may damage benthic in fauna and habitat. The
turbulent shearing in the wake of the gear components are
hydrodynamic and these give rise to the mobilization of sediment into
the water column (e.g. [20,21]). The mobilization of sediment has been
related to the re-suspension of phytoplankton cysts and zooplankton
resting eggs [22-24], however, the extent to which the passage of a
fishing gear affects the viability of these stages has never been assessed.
The present study is aimed to obtain an initial understanding of these
processes, and to explore how demersal trawl fisheries may affect the
re-suspension and viability of copepod resting eggs.

Material and Methods

Sample collection
Experimental trials were carried out during November 2007 by the

RV Clupea close to Nairn (57°37’N 3°54’W at depths ~ 22 m) and close
to Burghead (57°41’N 3°45’W at depths ~ 54 m), two areas within the
Moray Firth on the northeast coast of Scotland. To quantify the
sediment type and the depth distribution of eggs, 6 core samples (Ø 10
cm) were taken at each site using a Sholkovitz corer and sectioned in
three different depth intervals: 0 - 2 cm, 2 - 6 cm and 6 - 14 cm on
board the ship.
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For the assessment of the fishing gear effects on the sea bed and the
resting eggs buried into it, two different components of a demersal
trawl were used: a trawl door, which is used to spread the mouth of the
trawl net and ensure it maintains contact with the seabed (rectangular
1.37 m/0.88 m, 101 kg) ; and a rubber disc section of the ground gear,
which is used to protect the fishing net and maintain contact with the
seabed (Ø 15 cm /3.5 cm thick, 1.36 m long, 20.6 kg) [24]. The gear
components were towed individually from the vessel at a speed of ~ 1
ms-1 (2 knots) during 15 min tows and a benthic sledge was attached
behind the components to sample the sediment plume at 35, 55 and 80
cm above sea bed (for the trawl doors) or 35 cm above seabed (for the
rubber discs) by using a 20 µm mesh size plankton net with a Ø 6.0 cm
opening [24]. Two trawls (3 mesh samples for each) were carried out
at each station to evaluate the effects of doors and six trawls (1 mesh
sample for each) were carried out at each station after the rubber discs.

All samples (plankton net and core) were kept at 5°C on the
research vessel and transferred to the laboratory after the cruise.

Analysis of cores and net samples
Sediment samples from the cores and the plankton net were

processed in the laboratory the week following the cruise. Cores from
each sampling sites were processed as following: two samples were
fixed in buffered formalin 4% final concentration for counting, three
were used for hatching experiments and the last sediment sample was
analysed using a Malvern Instruments Mastersizer E Particle Size
Analyser.

The first set of mesh samples (3 samples) harvested after the doors
and three sets of mesh samples harvested after the rubber discs were
used for counting the number of eggs re-suspended in the water
column (formalin 4%). The second set of mesh samples (3 samples)
harvested after the doors and three other sets of mesh samples
harvested after the rubber discs were used for the hatching experiment.
There was no particle size analysis done on the sediment harvested in
the mesh after re-suspension.

Particles less than 20 µm are partly lost through the meshes during
trawling and therefore, comparing the egg density in the cores and the
mesh samples was done by pondering the counted number of eggs in
all samples with the weight of the 50-200 µm sediment fraction
(successive filtrations of a known sample volume). For fixed samples,
the 50 - 200 µm fraction containing resting eggs was transferred into
LUDOX solution 40%, mixed and centrifuged at 900 g [25]. The upper
fraction containing the eggs was rinsed on a 50 µm mesh and eggs
were enumerated under a dissection microscope at 40X magnitude.

The live samples (cores and plankton net) were rinsed through 200
and 50 µm filters with 10 µm filtered sea water (FSW) and the 50-200
µm fraction containing eggs was incubated in the dark at 12°C in 100
ml cell culture flasks in FSW on a rocking table to ensure gentle
movement of water and sediment and thereby oxygen to the resting
eggs in the flasks. Every three days, the water was exchanged; nauplii
were harvested and fixed in formalin for later identification. The
hatching experiment lasted for 35 days and at the end of the
incubation, the remaining eggs were counted and the weight of the
sediment fraction was obtained.

Statistical analysis
For statistical analysis, ANOVAs were carried out and followed

with pairwise comparison tests (Holm-Sidak method with p=0.05)
using Sigma plot (® V.12.3).

Results

Sediment structure and egg distribution
The sediment was classified as a mixture of poorly sorted ‘muddy

sand’ and ‘sandy mud’ at Nairn and poorly sorted ‘sandy mud’ at
Burghead [26]. The percentage silt (<63 µm) in the sediments was 54
and 66% by volume, respectively (Table 1).

Mean
particle
size (µm)

Median
particle size
(µm)

% below
63 µm

% below
20 µm

Folk
description

Nairn 73.6 ± 9.6 58.9 ± 7.8 53.9 ±
6.0

17.2 ±
1.4

Sandy Mud and
Muddy sand

Burghead 56.0 ± 2.4 42.1 ± 2.1 66.0 ±
1.9

26.4 ±
1.22

Sandy Mud

Table 1: Sediment composition in the study areas. Mean ± SD

Figure 1: Number of copepod eggs per gram of 50-200 µm sediment
fraction in the different layers of the cores at Burghead and Nairn,
and average number of copepod eggs per gram of 50 - 200 µm
sediment in the plankton net in the sledge samples, Mean ± SD,
n=3.

The eggs density across the three layers of sediment varied from
15.1 to 30.8 eggs cm-3 in the sediment of Burghead and from 6.5 to
13.9 eggs cm-3 at Nairn (mean of two cores). The density of eggs in the
surface and bottom layers of Burghead was lower than in the middle
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fraction (2 - 6 cm). Comparatively the Nairn samples had a lower
density of eggs at the surface and similar densities in the two deeper
sediment layers. The number of eggs per gram of the 50 - 200 µm
sediment fractions in the three sediment layers follows the same
distribution pattern (Figure 1). The density of eggs m-2 of surface area
can be estimated by integrating the egg density in all three layers of
sediment and gives 3.08 x 106 eggs m-2 and 1.71 x 106 eggs m-2 in the
Burghead and Nairn sediments, respectively.

Egg re-suspension and incubation
Fewer eggs tend to accumulate per gram of the 50-200 µm sediment

fraction in the plankton net samples of Burghead than in the cores at
the same location but no trends are observed at Nairn (Figure 1).

Eggs in the incubation experiment start hatching after 3 days and
most of the eggs hatched within the first ten days of incubation
independently from their origin. Only eggs from Nairn (6-14 cm) and
Burghead (after Discs) presented a less clear and more delayed pattern
(Figure 2).

Most eggs hatching were from the Centropages spp. and Temora
spp. genera, only a few Acartia spp. nauplii emerged from the 35 days
incubation period at Nairn. The occasional occurrence of harpacticoid
copepods was ignored from the study (Figure 3).

Figure 2: Accumulated calanoid copepod egg hatching rate over
time during the incubations

The hatching rates of eggs in the cores ranged from 2.1% to 8.7% of
the incubated eggs (Figure 4). Interestingly, the hatching success of
these eggs, which were harvested directly from the sediment, was
higher than those sampled from the water column after the passage of
the gear components (ANOVA with a Holm-Sidak post hoc test,
p<0.05). Furthermore, the hatching success of those eggs taken in the
wake of the rubber discs tended to be higher than those taken in the
wake of the heavier door.

Figure 3: Calanoid copepod nauplii hatching from 10 cm3 of
sediment at Burghead and Nairn in the different sediment layers.
Mean ± SD, n=3.

Figure 4: Hatching success of copepod eggs in the different layers of
sediment from Burghead and Nairn and hatching success of eggs
harvested in the water column just after the utilization of doors and
discs. Mean ± SD, n=3. Bars marked with a similar letter are
statistically different (ANOVA p<0.05).
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Discussion
Eggs from calanoid copepods were present at both stations, in the

different sediment layers, within the range of egg densities previously
reported in other sediments around the world [27,28].

There were more eggs found present in all layers of the finer
Burghead sediment than in the coarser Nairn sediment, supporting
what has been reported elsewhere [23,24]. These observations are
likely to reflect differences of the local hydrodynamic processes
whereby both the finer sediments and the comparatively lighter eggs
(with a relative density of about 1.05 - 1.2 as opposed to approximately
2.65 for quartz based sediments) will have a greater tendency to settle
and remain in less dynamic areas. Furthermore, the upper sediment
layers (0 - 2 cm) at both Burghead and Nairn contained the fewest
number of eggs, while the most were found in the 2 – 6 cm layer which
is possibly due to the eggs in the top layers being more available for re-
suspension and subsequent hatching [29].

Interestingly, there were fewer eggs in the suspended sediments of
Burghead than in the cores at the same site but this trend was not
obvious at Nairn. This probably reflects that it is only the top layer of
sediment (where there are fewer eggs) that is re-mobilized and that it
is the finer fraction of this layer that is more likely to be re-suspended
and sampled in the plankton nets.

The hatching rates values found in the present study are slightly
lower than those described by Marcus [30] where up to 21% of the
eggs hatched and far from what is reported in other sediments from
the Baltic Sea (~ 80% [31]). There were close to no hatching from
Acartia spp. in the present experiment. This could be due to that eggs
may have not received the cues for hatching in the present experiment
(such as light; [32] but which could also be dependent on temperature,
salinity etc.). Considering that Acartia spp. are found in the pelagic in
the area [33] during the summer and spring and its disappearance
from the water column is likely to be linked with the production of
resting eggs [34], it is very likely that eggs are present in the sediment
but have not been source of hatching in the present study.
Hypothetically, Centropages spp. and Temrora spp were not affected
by the lack of light during the present incubations.

Nevertheless, even if all cues that may have allowed a higher
hatching success were not tested during the present study, the
hatching success was higher for eggs harvested directly from the
sediment than those sampled from the sediment plume in the wake of
the gear components, demonstrating the potential immediate lethal
effect caused by trawling of heavy fishing gears. Although, the passage
of the fishing gear re-suspends resting eggs making them more
available for hatching, it may also damage the eggs and reduces their
hatching success. Additionally, the hatching success of those eggs
taken in the wake of the rubber discs was higher than those eggs taken
in the wake of the door suggesting that the forces in the sediment
associated with the heavier door damages the eggs more than those
from the lighter discs. Consequently, when assessing the effect of
trawling on copepod resting eggs, it is important to consider it at the
level of the individual gear components that comes in contact with the
seabed. It is also important to take into account the intensity of the
fishing effort, as in certain areas where the effort is high, the seabed
may be passed by a trawl many times a year [35] and the cumulative
effect on the copepod eggs will need to be considered in recruitment
perspectives.

Conclusions
This study has for the first time demonstrated that fishing with

demersal otter trawls is both a source of mortality of the copepod eggs
but also a source of re-suspension, which has the potential to increase
recruitment to the water column. To fully assess the trade-off between
mortality and recruitment on copepod ecology it is necessary to assess
the extent to which these eggs would otherwise be disturbed, re-enter
the water column and hatch. Therefore, it is also necessary to estimate
the re-suspension due to bioturbation and storm events under
different environmental conditions. We propose that more studies
looking at the effect of trawling on the survival, re-suspension and
overall recruitment from resting stages in marine sediments should be
carried out.
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