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Abstract

COPD are associated with an increased load on the diaphragm leading to accumulation of reactive oxygen
species (ROS) and the subsequent cellular damages and death. The pathological alterations inducted by ROS in the
diaphragm during oxygen breathing are not known. The purpose of the present study was to examine the effects of
hyperoxia exposure (HP) on free radicals (FR) accumulation in relation to the ultrastructural pathological alterations
in the diaphragm. Twenty adult male rats were randomly assigned to two groups; control (C); and hyperoxia (HP).
Animals of the HP were breathing 100% O2 for 72 hr continuously. Both serum and diaphragm tissue supernatant
analysis showed significantly higher (p<0.05) FR in HP group, as compared with control group. Ultrastructure
examinations showed that HP resulted in variety of pathological alterations in the mitochondria and endoplasmic
reticulum that were associated with disarrangement of myofibrils, loss of I-banding for myosin, focal myolysis of the
myofilaments, complete fragmentation of myosin, tearing of myofilamments from Z plates and tearing of the
endothelial cell of the interstitial blood capillaries. Based on the results of the present study, it can be concluded that
hyperoxia-induced acceleration ROS formation damaged the contractile apparatuses of the diaphragm and related
endomembrane proteins that could involve intracellular calcium channels proteins.
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Introduction
Oxygen is required to sustain life, but continued breathing of 100%

oxygen is toxic to the mammalian respiratory system. Oxidant
byproducts, such as superoxide anion (O2

-), peroxinitrate (ONOO-)
and hydrogen peroxide (H2O2), are produced as a consequence of
normal aerobic metabolism in skeletal muscle. Exertion-induced
muscle injury was attributed to elevated levels of reactive oxygen
species [1-17]. The diaphragm is the principal muscle of inspiration.
The diaphragm is a skeletal muscle and it is subject to oxidative stress
during increased work of breathing. Under normal physiological
conditions, reactive O2 species (ROS) production is balanced by an
efficient system of antioxidants, molecules that are capable of
scavenging ROS and thereby preventing oxidant damage.

Chronic obstructive pulmonary disease (COPD), specifically
emphysema, is a highly relevant disorder that inducts respiratory
muscle dysfunction mainly due to overinflated lungs [18-20].
Currently, there is no cure for this disorder. Nevertheless, the potential
therapeutic strategies focusing on respiratory muscles may overweigh
the potential of focusing on restoring destructed multiple lungs' units,
acini. Although it is well established that patients with COPD generate
less trans-diaphragmatic pressure than healthy subjects [3], the
diaphragm weakness has been ascribed to hyperinflation-induced
diaphragm shortening, which places the diaphragm at a mechanical
disadvantage [21-23]. Ultrastructural pathological alterations are direct
reliable markers for the cellular damages inducted by oxidative stress

[8,14,22,23,24-32]. Mitochondria inner membrane dependent
oxidative stress (MOS) is the origin of cellular oxidative stress [14,27].
There is no previous research provided information related to the
impact of O2 breathing on the ultrastructure pathological alterations
of the diaphragm myocyte, its mitochondria and its microvasculature
in relation to reactive oxygen species by-products (ROS).

In view of the review presented above, the present study was
designed to examine the effects 100% O2 breathing on the
ultrastrucure of the diaphragm and the associated free radicals
accumulation in both serum and diaphragm.

Materials and methods

Animals and experimental design
Twenty adult rats, Rattus norvigicus, matched with age weighing

~196 g, were brought from the university’s animal house, College of
Pharmacy, King Saud University (Riyadh, KSA). All rats were kept
under the same laboratory conditions of temperature (22 ± 2°C), dark
cycle (14 h light: 10 h dark) and were allowed free access to tap water
and standard food. Animals were randomly assigned to two groups,
ten animals each. The first group served as control (C group) and the
animals of the second group (HP group) were exposed to hyperoxia
(100% O2, medical grade) for 72 hr continuously. All animal testing
procedures and care were conducted according to the principles in the
guidelines for the care and use of laboratory animals as described in
the Guide for the Care and Use of Laboratory Animals prepared by the
National Academy of Sciences and published by National Institute of
Health (NIH publications 86-23 revised 1985) [60] and approved by
the King Saud University IACUC panel.
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Hyperoxia exposure (HP)
Animals of the experimental group (HP group) were placed in a

closed box that has an inlet flow which was connected to 100% O2
tank, medical grade, on which a regulator was connected to maintain
flow at 3 litres per minute. The out flow of the regulator passed
through a humidifier in order to saturate the inspired air with H2O.
The outlet ventilation rate of the box was adjusted at 3 litres per minute
to ensure that the concentration of oxygen in the box remains equal to
100% O2 in order to maintain normal flow and maintain normal
barometric pressure at 767 mmHg. The temperature inside the box was
also maintained at room temperature (22-24°C), throughout the 72 hr
of exposure period.

Ultra-structure procedure
Tissue samples from the diaphragm were immersed in buffered 3%

glutaraldhyde at 4°C for 4 hr and then post fixed in 1% osmium
tetroxide. Fixed tissue samples were dehydrated in graded
concentrations of ethyl alcohol, (30%, 50%, 70%, 90% and 100%).
Dehydrated tissue samples were then placed in propylene oxide to get
rid of ethanol and render the tissues to be penetratable for the
embedding media. This step was done at room temperature for 60 min.
Tissue samples were then transferred from propylene oxide to a
mixture of expoxy resins (Epon/Araldite). First, samples were placed in
a mixture of propylene oxide and resins at the ratio of 1:1 for 2 hr and
lastly placed in a pure epoxy mixture overnight. Tissue samples were
embedded in the epoxy mixture using polyethylene capsules.
Polymerization of the resin was done at 60°C for 48 hr. Ultra-thin
sections (70 nm) were made and double stained with uranyl acetate
and lead citrate and then examined and photographed under
transmission electron microscope (JEOL-100 CX) at 80kv.

Tissue preparation
Following the completion 72 hrs of HP period, animals were

sacrificed and the diaphragms were isolated and homogenized
immediately in 0.9 saline solutions (4:1 ratio) in an iced covet. The
homogenates were centrifuged for 10 minutes at 3000 revolution per
minute. Supernatant fractions from diaphragm homogenates were
separated and used for free radicals (FR) determinations.

Free radical determinations
Free radicals accumulation was determined, using the d-ROMs-4

test kit (Health and Diagnostic, Italy). The test measures the levels of
hydroperoxides (R-OOH) which are generated by peroxidation of
biological compounds; lipid, amino acids, nucleic acids. This test is
based on the principle of the ability of hydrogen peroxides to generate
free radicals after reacting with some transitional metals (Fe2+/Fe3+),
according to Fenton's reaction as follows:

H2O2 + Fe++ = *OH + OH- + Fe++

Thus, the hydrogen peroxides of biological test sample generate free
radicals (alcoxy and peroxyl radicals) after exposure to a transitional
metal (F++/Fe+++). In a correctly buffered chromogen substance (N, N-
diethyl-phenylendiamine) lead to the reduction of hydrogen peroxides
which in turns colored as radical cation. Color intensity was read using
spectrophotometer with peak absorbance of 505 nm. In the d-ROMs
test results were expressed in CARR units (CARR U), where one CARR
unit is equivalent to 0.08 mg H2O2/100 ml (0.08 mg vol%0).

Results
The mean final body weights (± SD) of control and hyperoxia group

at the end of the experiment were 197 ± 6, 199 ± 11, and 196 ± 8 g,
respectively. There were no significant (p>0.05) changes in body
weights prior to the experiment.

Free radicals (FR) in the serum and the diaphragm tissues
The results of paired t-test showed that the diaphragms' tissues and

serum means' (± SD) values for free radicals (FR) were significantly
(p<0.05) higher in the hyperoxia groups (HP), as compared with their
corresponding control means' values (Table 1).

Parameter

Serum FR Diapragm tissue FR

Hyperoxia
(HP) Control

Hyperoxia
HP Control

Mean 327.20 222.7 387.5 249.8

Observations 10 10 10 10

df 18 18

t Stat 3.898* 6.0955*

P(T ≤ t) one-tail 0.000527 0.000004

t Critical one-tail 1.734063 1.734064

*p<0.05

Table 1: Results of paired t-Test for free radicals (FR).

Figure 1: Control: Well-arranged sacromeres with in it
mitochondria and small area of dense glycogen muscle fibers of the
diaphragm; Note: regularity of banding and distribution of the
mitochondria as well as sarcoplasmic reticulum 10000X.

Diaphragm myocyte and mitochondria before O2 breathing
Ultra-structure samples from the control group showed well-

arranged sacromeres with normal distribution of the mitochondria and
small area of dense glycogen muscle fibers of the diaphragm. Regular
arrangement of both, thick (myosin) and thin (actin) filaments,
sacrcoplasmic reticulum (T- system) and the regularity of Z-lines that
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were separating the boundaries at the beginning and the ends of the
sarcomeres. Mitochondria distribution was homogenous with normal
size and number. Furthermore the locations of the mitochondria were
properly sited in close proximity to sarcoplasmic reticulum (Figure 1).

Myo-filaments pathological alterations
Ultra-structure samples from the diaphragm of the HP group (O2

breathing group) showed irregular arrangement of, thick (myosin) and
thin (actin) filaments, dilution and/or disappearnace of sacrcoplasmic
reticulum (T-system) and the absence of Z-lines those reflecting
distorted sarcomeres units. Myofibers showing obvious disarray of
myofilament (DMF) with disappearance of the characteristic banding.
Focal necrosis, resulting in indented and split fibers, was observed in a
variety of myofibres (Figure 2).

Figure 2: Myofibers showing obvious disarray of myofilament
(DMF) with disappearance of the characteristic banding. Note: the
hyperplastic mitochondria which also showed normal forms
20000X.

Mitochondria pathological alterations

Figure 3a: Remarkable focal mitochondrial hyperplasia (Mt Hpls)
and hypertrophy (Mt Hpr). Note: the hyperplastic mitochondria
have increased number of tubular cristae 14000X.

Remarkable Focal Mitochondrial hyperplasia and hypertrophy were
clearly observed (Figure 3) the hyperplastic mitochondria showed
increased tubular cristae with bizarre (abnormal) forms with partial

lamellation of their internal membrane. Markedly elongated
constricted mitochondria just before division into two organelles and
mitochondria swelling were also observed. The constricted part at the
elongation, the site of mitochondria proliferation, was surrounded by
focal myolysis of the myofilaments, which exhibited complete
fragmentation of myofilaments (Figure 3).

Figure 3b: Higher magnification for some proliferated
mitochondria. Note some mitochondria exhbit partial lamellation
of their internal memberane 20000X.

Figure 3c: Noticeably proliferated mitochondria which show
elongation and apparent constrictions (Mt Hpl Ct). Note: in-
distinction of the muscle fibre banding at the site of organelle’s
hyperplasia (Ind MFB) 14000X.

Interstitial blood capillary
Interstitial blood capillary showing marked swelling of the

endothelial cell which caused obliteration of the capillary lumen,
persistence of basal lamina invaded macrophages were distinctly
presented, a long papillary projection and extrusion of vacuolar
remnant. The interstitial space was widened and contains increased
level of collagen fibers. There was marked swelling of the endothelial
cell which caused obliteration of the capillary lumen, papillary
projection, and extrusion of vacuolar remnant and invaded
macrophages; including pinocytotic cytoplsmic microvesicles.
Irregularity of the adjacent membrane of the surrounding muscle fiber
nucleus was also observed. The interstitial space was widened and
contains increased collagen fibers. Organelles, including mitochondria,
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in the endothelial cytoplasm were degenerated and there were many
pinocytotic cytoplsmic microvesicles (Figure 4).

Figure 3d: Markedly elongated constricted mitochondria (CEMt)
just before division into two organelles and mitochondria swelling
(MtS). Note the constricted part at the elongation. Note also the site
of mitochondria proliferation is surrounded by focal myolysis of
myofilaments (FMF), which shows complete fragmentation of
myofilaments 14000X.

Discussion
The major finding of the present study showed that oxygen

breathing resulted in elevated FR production that was associated with
variety of pathological alterations and that was interpreted as lack of
antioxidants compensatory mechanisms. It had been shown that
oxidative stress relate to free radical production
[12,13,22,24,25,27,33,34]. During breathing pure oxygen, mixed
venous O2 saturation may increase as much as 10% from the ~70%
present during normal air breathing. This decreases the content of CO2
carried in the form of the carbamino load and consequently decreases
CO2 elimination at the lung capillaries leading to an increase in brain
tissue PCO2 that would stimulate respiration via the central
chemoreceptors. Another mechanism that could participate in the
hyperoxic enhancement of ventilation is the Haldane effect [16].
Normally, 30% of CO2 eliminated in the lungs comes from the
carbamino sources carried with the venous blood hemoglobin.
Oxygenated hemoglobin has a lower transport capacity for CO2 due to
a less reduced state of carbamino bonds and a decreased buffering
capacity [2,5-7,9-11,13,27,35-38].

The risk of hyperoxia was reported to increase with exposure period
for over 16 hours of hyperoxia [23,39] in diseases conditions, but in a
healthy adult risks are rarely seen before 24 hours of exposure
[12,35,40]. Previous data from our laboratory showed an increase in
the antioxidant enzyme, GPx, following the exposure to hyperoxia for
24 hr [22]. Clearly the oxidative stress induced by oxygen breathing for
72 hr of the present study caused specific morphological pathological
changes, apoptosis, in mitochondria and the nucleus that resulted in
excess formation of ROS, reduction of ATP, and impairments of
antioxidants genes transcriptional. Therefore Oxygen toxicity is
believed to occur when the diaphragm antioxidant defenses are
overwhelmed by the build-up of ROS [33,41-43]. In addition the
mitochondria swelling reported in the present study represents the
cellular bases accounted for the impairment of the permeability of both
inner and outer mitochondria. The giant and cloudy swelled

mitochondria observed in the present study reflected water and
hydrogen peroxide accumulation [28,32,36].

Figure 4: Interstitial blood capillary showing marked swelling of the
endothelial cell (SEND) which caused obliteration of the capillary
lumen, papillary projection, and extrusion of vacuolar remnant.
Note the irregular membrane of the adjacent muscle fiber nucleus
IMMF). The interstitial space is widened and contains increased
collagen fibers (WINTSCF) 14000X.

Although we did not measure water accumulation but we measured
H2O2 based on free radicals production, thus the observed cloudiness
and swelling of the present study reflected malfunction of osmotic
control secondary to failure of various hydro and lipid peroxidase
movement across the inner mitochondria membrane leading to
flooding the inner mitochondria membranes. In addition the
deteriorations of the cristae were associated with an increase in
mitochondria mass, constricted matrix, disarrangement of myofiberils
and the loss of I-banding. Myophagia, i.e. the invasion of a myofibre by
mononucleated cells, was reported in the emphysematous patients
(24,44,45). There were more signs of streaking, but no differences were
found in the presence of vacuoles. Lipofuscin granules were increased
and there were more atrophic fibers. Indeed the deterioration of
membrane potential of the mitochondria can induct mitochondria
oxidative stress (MOS). It was previously shown that hyperoxia
induced mitochondrial pathological changes provided critical
mitochondrial events responsible for oxidative stress-mediated
myocyte death [28].

Oxidative stress is thought to contribute to impairment and reduced
regenerating capacity of skeletal muscles in aged and diseased animals
[21,22,28,46-49]. Furthermore, elastase-induced emphysema in
hamsters is frequently used as an animal model to study morphological
and functional changes in the myocytes of diaphragm due to COPD
[32,50]. Orozco-Levi et al. [28] showed that sarcomere disruption is
present in COPD patients' diaphragmatic myocytes. Abnormalities of
the contractile apparatus, like register-shifting and Z-line distortions
were consistently found in the diaphragm of emphysematous. In
addition, the observed sarcoplasmic masses and focal degeneration
indicate various stages of degeneration. Focal as well as segmental
necrosis and eventually myonecrosis were found frequently in aged
diaphragm [50,51]. Levine and colleagues [23] published a landmark
paper showing a fiber-type shift in the diaphragm muscle of patients
with severe COPD. This fiber-type shift toward more oxidative type I
fibers is regarded as a beneficial adaptive response to increased
diaphragm loading, because it renders the diaphragm less susceptible
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to fatigue. Since then, several investigators have studied the effects of
COPD on functional, biochemical, and morphological characteristics
of the diaphragm.

Considering the clinical relevance of inspiratory muscle weakness in
patients with COPD, counteracting diaphragm weakness is of major
importance. Diaphragm wasting appears to play an important role in
compromising diaphragm contractile performance in patients with
COPD [44,47,52-63]. Because the etiology of diaphragm wasting in
COPD is complex and largely unclear, identifying therapeutic targets is
extremely difficult. However, downstream in the line of events leading
to wasting, increased proteolysis is likely to play a role, presumably
through activation of the ubiquitin-proteasome pathway [64]. Hence,
agents inhibiting proteasomal activity are of potential therapeutic
value. Recently, the proteasome inhibitor bortezomib has been
approved for treatment of multiple myeloma in humans [65]. It should
be noted, however, that the ubiquitin-proteasome pathway is regarded
only to degrade damaged or misfolded proteins. Consequently,
inhibiting proteasomal activity might lead to accumulation of damaged
proteins, ultimately leading to cell death. Nevertheless, in vivo
administration of bortezomib in an animal model of muscle atrophy
prevented muscle wasting by approximately 50% [66,67], and in both
studies, bortezomib was well tolerated. These findings show promise
for the use of proteasome inhibitors in syndromes associated with
muscle wasting, such as the diaphragm in COPD. Theoretically,
inhibition of E3-ligases rather than the proteasome provides an ideal
drug target, because E3-ligases have very high substrate and tissue
selectivity. Therefore, a specific inhibitor of, for example, MAFbx
should be a highly specific drug, and might prove beneficial in
preserving contractile protein content and preventing diaphragm
atrophy in COPD diaphragm.

Conclusions
Based on the results of the present study, it can be concluded that

hyperoxia-induced-mitochondria acceleration free radical formation
impaired the contractile apparatuses of the diaphragm and related
endomembrane proteins that could involve intracellular calcium
channels proteins. These new findings indicates that mitochondria are
a primary source of reactive oxygen species production in the
diaphragm during prolonged 100% O2 breathing therapeutic
strategies, hence during mechanical ventilation as well. These results
could lead to the development of a therapeutic intervention to avoid
mechanical ventilation-induced diaphragmatic injury. Perhaps the use
of antioxidants, via nasal interventions, should have the potential to
help COPD patients to improve the efficacy of their respiratory
muscles, hence lowering their conscious awareness of breathlessness,
dyspnea.
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